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General context
Proof assistants based on dependent type theory are becoming more and more popular today
in the mathematics community as Mathlib and Lean draws more and more of them towards
formalization, but even though the Curry-Howard correspondence has been extended for classical
logic through the use of control operators [Fel+87] since [Gri89], mixing dependent types theory
and constructive classical logic has not yet been achieved: indeed, it has been proved that
naively mixing unrestricted dependent types and classical logic implies proof-irrelevance [Coq89]:
all proofs are equal.

On the other hand, CPS translation allows to implement control operators, but also to
compile efficiently. In 2019, Cong et al. [Con+19] devised a 𝜆-calculus which is interesting
in order to better understand the CPS translation: devised as an intermediate language for
compilation, its types are annotated with a level, which is one or two; there is a 𝒞 control
operator which implements double negation elimination on level 2. In their calculus, every
second-class term can be allocated on the stack; and first-class values do not refer to second-class
variables in their closure, so the stack can be cleaned when a function accepts a first-class
argument. This ensures an efficient compilation: continuations introduced by the compiler are
all second-class, so they do not need more heap memory. The addition of second-class types do
not increase the logical power, so the first level remains intuitionistic. Furthermore, their CPS
translation presents intuitionistic features without being syntactically linear: continuations can
be duplicated or forgotten to a certain extent.

Furthermore, on a seemingly completely different matter, S4 is a modal logic with an
additional connector □. The Gödel-McKinsey-Tarski theorem says that the Gödel translation
of intuitionistic logic into the S4, which essentially replaces 𝐴→ 𝐵 by □(𝐴→ 𝐵) recursively,
preserves and reflects provability [Göd01; MT48].

Research problem
In order to build a dependent type theory with effects, it seems that the crucial property is
the thunkability property, identified by [Füh99], which amounts to say that the term can be
substituted safely — intuitively, this means that means that the term is pure. For example,
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if 𝑡 is thunkable then “𝜆𝑥.𝑡” and “let 𝑦 = 𝑡 in 𝜆𝑥.𝑦” behave the same; this is not true if, for
example, 𝑡 raises an exception or loops indefinitely.

The goal of this internship was to investigate the notion of second-class continuations for
logic, to see if the the stackability property of second-class values highlighted by Cong et al.
means that they are pure or thunkable in some sense, and to study if they do not increase the
logical power of the calculus, thus allowing to mix an intuitionistic theory with some control.
This will deepen our understanding of the Curry-Howard correspondence for classical logic, as
well as the logical understanding of the difference of continuations used in compilation and in
logic.

Your contribution
I have shown that the first-class arrow of Cong et al. can be decomposed as □(𝐴→ 𝐵), where
→ is the second-class arrow and □ is a modality which restricts the closure so that it only
refers to first-class variables, and moreover, that terms of type □𝐴 in a modal context, which
corresponds to first-class terms, are thunkable, even when they use the 𝒞 operator. Furthermore,
we realized that the modality □ shares the laws of the S4 modality. Thus, based on these
principles, I devised a 𝜆̄𝜇𝜇̃-calculus, the system L□

pol, which implements polarized classical
logic: there are positive (i.e. strict/call-by-value) and negative (i.e. lazy/call-by-name) versions
of connectors like the disjunction: this allows a more fine-tuned operational semantics, and
to adequately represent the distinction between the intuitionistic negation and the classical
negation, the latter being negative; furthermore, there is a modality □ representing the S4
modality. I also have a 𝜆-calculus version of this system, as well as a CPS translation, and the
L□

pol system is shown to factorizes the CPS translation of Cong et al [Con+19].
My two main results are:
1. an observational model in which all terms of modal type in a modal context are thunkable;
2. a variant of the Gödel-McKinsey-Tarski theorem: intuitionistic logic can be embedded by

translating 𝐴→ 𝐵 as □(𝐴→ 𝐵) and the translation preserves and reflects provability.
The system L□

pol shows that one can devise a classical calculus, with control effects, while
keeping a large class of thunkable terms, into which the usual 𝜆-calculus can be embedded.

Arguments supporting its validity
The unexpected connection with the S4 modal logic leads me to think that there is something
more profound under the hood. I have written detailed proofs of all the claims I made in this
report, mostly in appendices (see section A, section B and section C).

Summary and future work
I devised L□

pol, a calculus for classical logic with control effects, and where all terms of “modal”
type are thunkable; moreover, there is an interpretation of intuitionistic logic into modal types,
so we may say that all terms of intuitionistic type are thunkable.

Following [Miq19], who build a dependent type theory with classical control, based on the
fact that a specific fragment — the NEF fragment — was thunkable, the next goal would be to
integrate dependent types in this system, where dependent types could only depend on modal
types. The modal fragment is far bigger than the NEF fragment, because intuitionistic logic
can be embedded into it, so the resulting type theory would be more powerful, maybe with the
possibility to serve as a foundation for classical mathematics.
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1. Introduction

In this report, I would like to thank both my advisor Guillaume Munch-Maccagnoni and the
whole Gallinette team, especially Johann Rosain and Léo Soudant with whom I shared my
office, as working with them for the few months I have been there was a great experience, as
well as Étienne Miquey from I2M, who collaborated with us remotely and whom I had the
chance of meeting during his short stay in Nantes.

Modern proof assistants are based constructive logic. Even though a computational interpre-
tation of classical proofs exists through the use of control operators [Fel+87], dependent types
have proven being difficult to mix with effects in general [Her05] and especially with classical
logic [Coq89], thus, the excluded middle is only added as an axioms in proof assistants.

Having a dependent type theory with classical control may allow to better reason on CPS
translation and typed compilation of dependently typed programs; moreover, it will correspond
more accurately to the logic mathematician use in their daily work. A first step in that direction
was solving the difficult problem of CPS translation for dependently typed programs, which have
been achieved by [Bow18]. CPS translation are used in order to implement efficient compilation,
but also allows to implement control operators by directly accessing the continuation.

Cong et al. [Con+19] presented a 𝜆-calculus which has interesting properties: types are either
level 1 or level 2, and the 𝒞 operator implements double negation elimination with respect to
level 2 negation, inspired by the original 𝒞 operator of [Fel+87] which Griffin shown that it
implements double negation elimination [Gri89]; moreover, level 1 values do not refer to level
2 variables, and level 2 values can be allocated on the stack. Moreover, thir CPS translation
has intuitionistic features. I studied this stackability property and its relation with thunkable,
as well as the notion of second-class continuation, in order to understand them from a logical
point of view, and showed that their level 1 function type can be decomposed as □(𝐴→ 𝐵),
where □ is a modality respecting the S4 laws, and moreover, I showed that terms of type □
defined in a modal context, or equivalently, first-class terms defined in a first class context
are thunkable. Their calculus forbid functions to returns second-class elements; we lift this
restriction, as explained in section D.

I will first present in section 2 the 𝜆□𝒞-calculus, a call-by-value, simply typed calculus with a
S4-like modality □ and a 𝒞 control operator implementing double negation elimination. I will
then give in section 3 a translation of this calculus into a 𝜆̄𝜇𝜇̃-calculus, the system L□

pol, which
preserves preserves proofs, reductions, and types. The system L□

pol features a simple type system
with a modality □. It is polarized, which means that connectors comes in two flavours: positive
(i.e., strict/call-by-value) and negative (i.e., lazy/call-by-name). For example, the call-by-value
arrow of the 𝜆□𝒞-calculus is defined as ⇓(𝐴 → 𝐵), with → the negative arrow, and ⇓ the
positive polarity shift. Effects arise in the system L□

pol when a term captures a continuation and
uses it non-linearly. This system is a 𝜆̄𝜇𝜇̃-calculus: these kinds of systems are more suitable
than 𝜆-calculus to work with classical logic, because they represent sequent calculus instead of
natural deduction, which is ill-behaved for classical logic. After that, in section 4, I present a
CPS translation on the system L□

pol which targets a fragment of the 𝜆□𝒞-calculus, and show
that it factorizes the CPS translation of the 𝜆□𝒞-calculus. Then, I show that the system L□

pol
is strongly normalizing in section 5. After that, I explain in section 6 what the thunkability
property is in this setting: roughly, a thunkable term 𝑡 is one that behaves like a value, i.e.
“𝜆𝑥.𝑡” and “let 𝑦 = 𝑡 in 𝜆𝑥.𝑦” are equivalent. I provide a model of the system L□

pol in section 7,
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based on observational equivalence, from which I can deduce the consistency of the system,
and I also show my first main result: in this model, every term of modal type in a modal
context is thunkable. In section 8 I show that proofs can be focused, which is nice technical
property on sequents, used for the proof of the second main result. Finally in section 9 I prove
my second main result, an analogue of the Gödel-McKinsey-Tarski theorem [Göd01; MT48]:
the translation of intuitionistic logic into the system L□

pol preserves and reflects provability.

2. The 𝜆□𝒞-calculus

We introduce here a call-by-value 𝜆-calculus for the classical S4 modal logic. This calculus is a
call-by-value variant of the calculus of Kavvos [Kav17], to which I added a 𝒞 control operator,
implementing classical logic. The types are the types of the simply typed 𝜆-calculus, with an
additional unary connective, □ (read “box”). In S4, the axioms of □ make it a strong comonad.
There are two typing judgments: Γ | Θ ⊢ 𝑡 : 𝐴 and Γ | Θ ⊢ 𝑡 : ⊥. Γ is the usual context, but
Θ consists of types 𝐵 which are implicitly to be seen as □𝐵. The two judgments are distinct
because ⊥ is not a real type; it can be used to form the type ¬𝐴 because we have a primitive
notion of negation, but we cannot build, for example, the type 𝐴 ⊗ ⊥. This restriction is
engraved in the syntax; for example, there are let expressions that return ⊥ and let which
return another type. This calculus is inspired by and refines the calculus of [Con+19]; see
section D for more details.

We define a function 𝜛(𝐴) ∈ {+,2} on types which returns its mode/polarity. If 𝜛(𝐴) = 2,
this means that 𝐴 is modal, that is, 𝐴 is endowed with a coalgebra structure 𝐴→ □𝐴 for 𝐴, and
additionally, 𝐴 behaves in a call-by-value manner; if 𝜛(𝐴) = + this means that it is non-modal
type which behaves in a call-by-value manner. We define 2⊙2 = 2 and +⊙ 𝜀 = 𝜀⊙+ = +
for 𝜀 ∈ {2,+}. It allows composing polarities. Intuitively, if 𝐴 and 𝐵 both have a coalgebra
for □, then we can build their product or sum coalgebra; and □𝐴 is always equipped with the
free coalgebra structure.

The introduction rule of □ states that all types in Γ must be modal: we note Γ2 the
restriction of Γ to the types 𝐴 such that 𝜛(𝐴) = 2. A crucial inversion property states that if
Γ | Θ ⊢ 𝑉 : 𝐴 where 𝜛(𝐴) = 2, then Γ2 | Θ ⊢ 𝑉 : 𝐴, and even more, in a categorical model,
the semantics of such a sequent is a coalgebra morphism [CFM16; Mun17]. This only applies
to values: there are terms for which this is not true.

The types 1, ⊗ and ⊕ are the usual unit, product and sum types. Additionally, there is a 𝒞
control operator in order to make the calculus classical.

Lastly, this calculus is defined in a multiplicative fashion: renamings are explicit in the syntax
and contexts are splitted between all the premises. A renaming 𝜃 designates a function from
the variables of Γ to the ones of Γ′ and from the variables of Θ to the ones of Θ′. The syntax is
given in fig. 1.

Notice that 2𝑡 is allowed only when 𝑡 is a value. This makes that □ is not, stricly speaking,
a strong comonad; for example, we do not have □(𝐴 → 𝐵) → □𝐴 → □𝐵 in general; but
it is still true in a more general sense: we do have □(𝐴 → 𝐵) → □𝐴 → □(1 → 𝐵), and if
𝑥 : 𝐴 | · ⊢ 𝑉 : 𝐵; · then · | 𝑥 : 𝐴 ⊢ 2𝑉 : □𝐵; ·. More generally, see [CFM16] for discussions on
value restrictions and modality in a call-by-value setting.
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𝑉,𝑊 := 𝑥 | * | (𝑉,𝑊 ) | 𝜄𝑖 𝑉 | 𝜆𝑥.𝑡 | 𝜆⊥𝑥.𝑡

𝑡, 𝑢, 𝑣, 𝑤 := 𝑉 | 𝑡 𝑉 | 𝑡⊥ 𝑉 | 𝒞 𝑡 | let 𝑥 = 𝑡 in 𝑢 |

let 𝑥 = 𝑡 in⊥ 𝑢 | let * = 𝑡 in 𝑢 | let * = 𝑡 in⊥ 𝑢 | let (𝑥, 𝑦) = 𝑡 in 𝑢 |

let (𝑥, 𝑦) = 𝑡 in⊥ 𝑢 | match 𝑡 with {𝜄1 𝑥.𝑢 | 𝜄2 𝑦.𝑣} | match 𝑡 with⊥ {𝜄1 𝑥.𝑢 | 𝜄2 𝑦.𝑣}
(a) Grammar

𝐴,𝐵,𝐶 := 1 𝐴⊕𝐵 𝐴⊗𝐵 𝐴→ 𝐵 ¬𝐴 □𝐴
𝜛(𝐴) := 2 𝜛(𝐴)⊙𝜛(𝐵) 𝜛(𝐴)⊙𝜛(𝐵) + + 2

(b) Types and polarities

Γ, 𝑥 : 𝐴,Γ′ | Θ ⊢ 𝑥 : 𝐴 Γ′ | Θ, 𝑥 : 𝐴,Θ′ ⊢ 𝑥 : 𝐴
Γ | Θ ⊢ 𝑡 : ¬¬𝐴
Γ | Θ ⊢ 𝒞 𝑡 : 𝐴

Γ | Θ ⊢ 𝑡 : 𝐴 Γ′, 𝑥 : 𝐴 | Θ′ ⊢ 𝑢 : 𝐵
Γ,Γ′ | Θ,Θ′ ⊢ let 𝑥 = 𝑡 in 𝑢 : 𝐵

Γ | Θ ⊢ 𝑡 : 𝐴 Γ′, 𝑥 : 𝐴 | Θ′ ⊢ 𝑢 : ⊥
Γ,Γ′ | Θ,Θ′ ⊢ let 𝑥 = 𝑡 in⊥ 𝑢 : ⊥

Γ | Θ ⊢ * : 1
Γ | Θ ⊢ 𝑉 : 𝐴 Γ′ | Θ′ ⊢𝑊 : 𝐵

Γ,Γ′ | Θ,Θ′ ⊢ (𝑉,𝑊 ) : 𝐴⊗𝐵
Γ | Θ ⊢ 𝑉 : 𝐴𝑖

Γ | Θ ⊢ 𝜄𝑖 𝑉 : 𝐴1 ⊕𝐴2
Γ2 | Θ ⊢ 𝑉 : 𝐴

Γ2 | Θ ⊢ 2𝑉 : □𝐴
Γ, 𝑥 : 𝐴 | Θ ⊢ 𝑡 : 𝐵

Γ | Θ ⊢ 𝜆𝑥.𝑡 : 𝐴→ 𝐵

Γ, 𝑥 : 𝐴 | Θ ⊢ 𝑡 : ⊥
Γ | Θ ⊢ 𝜆⊥𝑥.𝑡 : ¬𝐴

Γ | Θ ⊢ 𝑡 : 1 Γ′, 𝑥 : 1 | Θ′ ⊢ 𝑢 : 𝐴
Γ,Γ′ | Θ,Θ′ ⊢ let * = 𝑡 in 𝑢 : 𝐴

Γ | Θ ⊢ 𝑡 : 1 Γ′, 𝑥 : 1 | Θ′ ⊢ 𝑢 : ⊥
Γ,Γ′ | Θ,Θ′ ⊢ let * = 𝑡 in⊥ 𝑢 : ⊥

Γ | Θ ⊢ 𝑡 : 𝐴⊗𝐵 Γ′, 𝑥 : 𝐴, 𝑦 : 𝐵 | Θ′ ⊢ 𝑢 : 𝐶
Γ,Γ′ | Θ,Θ′ ⊢ let (𝑥, 𝑦) = 𝑡 in 𝑢 : 𝐶

Γ | Θ ⊢ 𝑡 : 𝐴⊗𝐵 Γ′, 𝑥 : 𝐴, 𝑦 : 𝐵 | Θ′ ⊢ 𝑢 : ⊥
Γ,Γ′ | Θ,Θ′ ⊢ let (𝑥, 𝑦) = 𝑡 in⊥ 𝑢 : ⊥

Γ | Θ ⊢ 𝑡 : 𝐴⊕𝐵 Γ′, 𝑥 : 𝐴 | Θ′ ⊢ 𝑢 : 𝐶 Γ′, 𝑦 : 𝐵 | Θ′ ⊢ 𝑣 : 𝐶
Γ,Γ′ | Θ,Θ′ ⊢ match 𝑡 with {𝜄1 𝑥.𝑢 | 𝜄2 𝑦.𝑣} : 𝐶

Γ | Θ ⊢ 𝑡 : 𝐴⊕𝐵 Γ′, 𝑥 : 𝐴 | Θ′ ⊢ 𝑢 : ⊥ Γ′, 𝑦 : 𝐵 | Θ′ ⊢ 𝑣 : ⊥
Γ,Γ′ | Θ,Θ′ ⊢ match 𝑡 with⊥ {𝜄1 𝑥.𝑢 | 𝜄2 𝑦.𝑣} : ⊥

Γ | Θ ⊢ 𝑡 : □𝐴 Γ′ | Θ′, 𝑥 : 𝐴 ⊢ 𝑢 : 𝐵
Γ,Γ′ | Θ,Θ′ ⊢ let 2𝑥 = 𝑡 in 𝑢 : 𝐵

Γ | Θ ⊢ 𝑡 : □𝐴 Γ′ | Θ′, 𝑥 : 𝐴 ⊢ 𝑢 : ⊥
Γ,Γ′ | Θ,Θ′ ⊢ let 2𝑥 = 𝑡 in⊥ 𝑢 : ⊥

Γ | Θ ⊢ 𝑡 : 𝐴→ 𝐵 Γ′ | Θ′ ⊢ 𝑉 : 𝐴
Γ,Γ′ | Θ,Θ′ ⊢ 𝑡 𝑉 : 𝐵

Γ | Θ ⊢ 𝑡 : ¬𝐴 Γ′ | Θ′ ⊢ 𝑉 : 𝐴
Γ,Γ′ | Θ,Θ′ ⊢ 𝑡⊥ 𝑉 : ⊥

Γ | Θ ⊢ 𝑡 : 𝐴
𝜃 renaming

Γ′ | Θ′ ⊢ 𝜃(𝑡) : 𝐴
Γ | Θ ⊢ 𝑡 : ⊥

𝜃 renaming
Γ′ | Θ′ ⊢ 𝜃(𝑡) : ⊥

(c) Typing rules

Reduction contexts for 𝒞: 𝐹 [_] := let 𝑥 = [_] in 𝑡 | let * = [_] in 𝑡 |

let (𝑥, 𝑦) = [_] in 𝑡 | match [_] with {𝜄1 𝑥.𝑡 | 𝜄2 𝑦.𝑢} | [_] 𝑉 | 𝒞 [_]

(𝜆𝑥.𝑡) 𝑉 → 𝑡[𝑥 := 𝑉 ]
let 𝑥 = 𝑉 in 𝑡 → 𝑡[𝑥 := 𝑉 ]
let * = * in 𝑡 → 𝑡

let (𝑥, 𝑦) = (𝑉,𝑊 ) in 𝑡 → 𝑡[𝑥 := 𝑉, 𝑦 := 𝑊 ]
match 𝜄𝑖 𝑉 with {𝜄1 𝑥1.𝑡1 | 𝜄2 𝑥2.𝑡2} → 𝑡𝑖[𝑥𝑖 := 𝑉 ]

let 2𝑥 = 2𝑉 in 𝑡 → 𝑡[𝑥 := 𝑉 ]

𝐹 [𝒞 (𝜆⊥𝑘.𝑡)] → 𝒞 (𝜆⊥𝑗.𝑡[𝑘 := 𝜆⊥𝑥. let 𝑦 = 𝐹 [𝑥] in⊥ 𝑗⊥ 𝑦])
𝒞 (𝜆⊥𝑘.𝑘 𝑉 ) → 𝑉 (only if 𝑘 is not free in 𝑉 , and the redex is at the toplevel.)

(d) Reductions

Figure 1: The 𝜆□𝒞-calculus
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Contrary to Kavvos, this calculus is classical and in call-by-value; we also changed a bit the
definition of the introduction rule of □. In his work, 2𝑉 is typed with Γ empty; in this version,
we allow keeping in Γ types with 𝜛(𝐴) = 2. This is valid because the semantics of □𝑉 in his
work is to apply the extend operation of the comonad to the semantics of 𝑉 , and the semantics
of our version would to be first compose with the coalgebra of the types in Γ, then applying
extend.

The calculus comes with the usual 𝛽-reduction rules. The rules for 𝒞 are inspired of the
ones of [Con+19], and are variant of the ones of [Fel+87; Gri89]. Reductions are allowed in
every subterm, except for one of them which can only be applied at toplevel. We do not write
the rules for ⊥ constructs, as they are the same as their non-⊥ counterpart. Note that there
is no ⊥ variant for 𝒞. In order to define the reduction for 𝒞, we need to define a notion of
single-frame non-⊥ context. The idea is that if 𝒞 (𝜆⊥𝑘.𝑡) is inside an elementary context 𝐹 [_]
which is not of ⊥ type, the 𝒞 can bubble up.

Lastly, let us note ∼= for the reflexive, symmetric and transitive closure of →.

2.1. CPS

We can define a CPS translation of this calculus into its fragment that does not use the function
type 𝐴→ 𝐵, nor the 𝒞 operator. This fragment will be called the 𝜆¬

□-calculus. We add to this
fragment the 𝜂-reduction for functions (it will be needed later, contrary to other 𝜂-rules). This
means that 𝜆𝑥.𝑉 𝑥→ 𝑉 and 𝜆⊥𝑥.𝑉 ⊥ 𝑥→ 𝑉 if 𝑥 is not free in 𝑉 .

First, we translate types. The translation corresponds to the usual call-by-value CPS
translation for call-by-value [App07, p. 12], but it optimizes the translation of ¬𝐴, as in
[Con+19]:

J1K𝜆 = 1 J𝐴⊗𝐵K𝜆 = J𝐴K𝜆 ⊗ J𝐵K𝜆 J𝐴⊕𝐵K𝜆 = J𝐴K𝜆 ⊕ J𝐵K𝜆

J□𝐴K𝜆 = □ J𝐴K𝜆 J¬𝐴K𝜆 = ¬ J𝐴K𝜆 J𝐴→ 𝐵K𝜆 = ¬(J𝐴K𝜆 ⊗ ¬ J𝐵K𝜆)

Note that 𝜛(J𝐴K𝜆) = 𝜛(𝐴).
Now we define the translation on terms and values. This translation is higher-order, as

in [DF92], to avoid introducing unnecessary redexes. There is a translation from values to
values J∙K𝜆

v , and a translation J∙K𝜆
t (∙) which takes a term of the source and a value of the

target representing the continuation. It returns a term. Lastly, there is a translation J∙K𝜆
⊥

for terms of ⊥ type, which also returns a term. We define 𝜆⊥(𝑥, 𝑦).𝑡 to be a notation for
𝜆⊥𝑧. let (𝑥, 𝑦) = 𝑧 in⊥ 𝑡, and 𝜆⊥ * .𝑡 to be a notation for 𝜆⊥𝑧. let * = 𝑧 in⊥ 𝑡.

J𝑥K𝜆
v = 𝑥

q
𝜆⊥𝑥.𝑡

y𝜆

v = 𝜆⊥𝑥. J𝑡K𝜆
⊥ J𝜆𝑥.𝑡K𝜆

v = 𝜆⊥(𝑥, 𝑘). J𝑡K𝜆
t (𝑘) J2𝑉 K𝜆

v = 2 J𝑉 K𝜆
v

J*K𝜆
v = * J𝜄𝑖 𝑉 K𝜆

v = 𝜄𝑖 J𝑉 K𝜆
v J(𝑉,𝑊 )K𝜆

v = (J𝑉 K𝜆
v , J𝑊 K𝜆

v )

J𝑉 K𝜆
t (𝑀) = 𝑀⊥ J𝑉 K𝜆

v J𝒞 𝑡K𝜆
t (𝑀) = J𝑡K𝜆

t (𝜆⊥𝑣.𝑣⊥ 𝑀)
Jlet 𝑥 = 𝑡 in 𝑢K𝜆

t (𝑀) = J𝑡K𝜆
t (𝜆𝑥⊥. J𝑢K𝜆

t (𝑀)) Jlet 𝑥 = 𝑡 in⊥ 𝑢K𝜆
⊥ = J𝑡K𝜆

t (𝜆⊥𝑥. J𝑢K𝜆
⊥)

Jlet * = 𝑡 in 𝑢K𝜆
t (𝑀) = J𝑡K𝜆

t (𝜆⊥ * . J𝑢K𝜆
t (𝑀)) Jlet * = 𝑡 in⊥ 𝑢K𝜆

⊥ = J𝑡K𝜆
t (𝜆⊥ * . J𝑢K𝜆

⊥)
Jlet (𝑥, 𝑦) = 𝑡 in 𝑢K𝜆

t (𝑀) = J𝑡K𝜆
t (𝜆⊥(𝑥, 𝑦). J𝑢K𝜆

t (𝑀)) Jlet (𝑥, 𝑦) = 𝑡 in⊥ 𝑢K𝜆
⊥ = J𝑡K𝜆

t (𝜆⊥(𝑥, 𝑦). J𝑢K𝜆
⊥)

Jmatch 𝑡 with {𝜄1 𝑥.𝑢 | 𝜄2 𝑦.𝑣}K𝜆
t (𝑀) = J𝑡K𝜆

t (𝜆⊥𝑧.match 𝑧 with⊥ {𝜄1 𝑥. J𝑢K𝜆
t (𝑀) | 𝜄2 𝑦. J𝑣K𝜆

t (𝑀)})
Jmatch 𝑡 with⊥ {𝜄1 𝑥.𝑢 | 𝜄2 𝑦.𝑣}K𝜆

⊥ = J𝑡K𝜆
t (𝜆⊥𝑧.match 𝑧 with⊥ {𝜄1 𝑥. J𝑢K𝜆

⊥ | 𝜄2 𝑦. J𝑣K
𝜆
⊥})

J𝑡 𝑉 K𝜆
t (𝑀) = J𝑡K𝜆

t (𝜆⊥𝑘.𝑘⊥ (J𝑉 K𝜆
v , 𝜆

⊥𝑥.𝑀⊥ 𝑥))
q
𝑡⊥ 𝑉

y𝜆

⊥ = J𝑡K𝜆
t (𝜆⊥𝑘.𝑘⊥ J𝑉 K𝜆

v )
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In the end, we get that:
• If Γ | Θ ⊢ 𝑉 : 𝐴 then JΓK𝜆 | JΘK𝜆 ⊢ J𝑉 K𝜆

v : J𝐴K𝜆

• If Γ | Θ ⊢ 𝑡 : 𝐴 then JΓK𝜆 , 𝑘 : ¬ J𝐴K𝜆 | JΘK𝜆 ⊢ J𝑡K𝜆
t (𝑘) : ⊥

• If Γ | Θ ⊢ 𝑡 : ⊥ then JΓK𝜆 | JΘK𝜆 ⊢ J𝑡K𝜆
⊥ : ⊥

Lemma 1. If 𝑉 → 𝑉 ′ (resp. 𝑡→ 𝑡′ and 𝑀 → 𝑀 ′ or 𝑡→ 𝑡′) then J𝑉 K𝜆
v
∼= CPS J𝑉 ′K□ 𝑣 (resp.

J𝑡K𝜆
t (𝑀) ∼= CPS J𝑡′K□ 𝑡𝑀 ′ and J𝑡K𝜆

⊥
∼= J𝑡′K𝜆

⊥), and we have the same theorem with →* instead
of ∼= if the contracted redex is not 𝐹 [𝒞 (𝜆⊥𝑘.𝑡)].

For the proof, see section A.1.

3. System L□
pol

We devised in the previous section a 𝜆-calculus for the classical S4 modal logic, but 𝜆-calculi are
representations of natural deduction systems, which is ill-behaved for classical logic in contrast
to sequent calculus. Thus, we devised another system, more complete, which is more fitting for
sequent calculus: a 𝜆̄𝜇𝜇̃-calculus [CH00]. Here, we rely on a polarised variant, which means it
supports both call-by-name and call-by-value. Its formulas are inspired by the system LC of
Girard [Gir91] and LK𝜂

𝑝𝑜𝑙 of Danos, Joinet and Schellinx [DJS97], which are polarised system
for classical logic, but without term assignment system. A term assignment system for those
has been designed by my supervisor in [Mun09], and the system presented here is adapted from
it. We do not support the full extent of the connectives (there is no negative pair, no positive
negation, no false type, no negative true type).

3.1. Syntax

• Polarities 𝜀 := + | −
• Values 𝑉,𝑊 := 𝑥 | 𝜇𝛼−.𝑐 | * | (𝑉,𝑊 ) | 𝜄𝑖𝑉 | 2𝑉 | {𝑉 } | 𝜇[𝑥].𝑐 | 𝜇(𝛼, 𝛽).𝑐 | 𝜇{𝛼}.𝑐
• Terms 𝑡 := 𝑉 | 𝜇𝛼+.𝑐

• Stacks : 𝑆, 𝑆′ := 𝛼 | 𝜇̃𝑥+.𝑐 | 𝜇̃ * .𝑐 | 𝜇̃(𝑥, 𝑦).𝑐 | 𝜇̃(𝜄1 𝑥.𝑐 | 𝜄2 𝑦.𝑐′) | 𝜇̃2𝑥.𝑐 | 𝜇̃{𝑥}.𝑐 | [𝑉 ] |
(𝑆, 𝑆′) | {𝑆}

• Environments : 𝑒 := 𝑆 | 𝜇̃𝑥−.𝑐

• Commands : 𝑐, 𝑐′ := ⟨𝑡 |+ 𝑆⟩ | ⟨𝑉 |− 𝑒⟩.

There are five syntactic classes in the syntax: values, terms, stacks, environments and
commands. Commands correspond to programs where no input nor output is focused, and
are introduced by the cut rules. Values and terms represent a focus on the right of the
⊢, and stacks and environments represent a focus on its left part. The difference between
values and terms, respectively stacks and environments, is that one can substitute variables,
respectively covariables only by values, respectively by stacks, not by arbitrary terms or
environments. Intuitively, ⟨𝑉 |− 𝑒⟩ correspond to the program obtained by placing a value 𝑉 in
some environment 𝑒, and ⟨𝑡 |+ 𝑆⟩ to the program obtained by giving a stack 𝑆 to some term 𝑡.

Constructs starting with 𝜇 represent the capture of some continuation or stack, and they can
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optionally pattern match on it. Symmetrically, constructs starting by 𝜇̃ represent the capture
of some value by the environment (i.e., a let), and then optionally a pattern matching on it.

For example, a (𝑉,𝑊 ) represents the pair of two values and 𝜇̃(𝑥, 𝑦).𝑐 represents a program
which pattern matches on the value it waits for, assigns its member to 𝑥 and 𝑦 and continue
with 𝑐; [𝑉 ] represents a stack where we putted the value 𝑉 at the bottom, and 𝜇[𝑥].𝑐 represents
a program that will inspect a stack of this form, retrieve 𝑉 , assign it to 𝑥 and continue with 𝑐.

We will write ⟨𝑡 |𝜀 𝑒⟩ or even ⟨𝑡 | 𝑒⟩ when it is not necessary to mention the polarity. We will
write 𝜇𝛼𝜀.𝑐 and 𝜇̃𝑥𝜀.𝑐 as well.

3.2. Reductions

We have 𝛽-reductions and 𝜂-reductions:1

⟨𝜇𝛼𝜀.𝑐 |𝜀 𝑆⟩ →𝛽 𝑐[𝛼 := 𝑆]
⟨𝑉 |𝜀 𝜇̃𝑥𝜀.𝑐⟩ →𝛽 𝑐[𝑥 := 𝑉 ]
⟨* |+ 𝜇̃ * .𝑐⟩ →𝛽 𝑐

⟨(𝑉,𝑊 ) |+ 𝜇̃(𝑥, 𝑦).𝑐⟩ →𝛽 𝑐[𝑥 := 𝑉, 𝑦 := 𝑊 ]
⟨𝜄𝑖 𝑉 |+ 𝜇̃(𝜄1 𝑥1.𝑐1 | 𝜄2 𝑥2.𝑐2)⟩ →𝛽 𝑐𝑖[𝑥𝑖 := 𝑉 ]

⟨2𝑉 |+ 𝜇̃2𝑥.𝑐⟩ →𝛽 𝑐[𝑥 := 𝑉 ]
⟨{𝑉 } |+ 𝜇̃{𝑥}.𝑐⟩ →𝛽 𝑐[𝑥 := 𝑉 ]
⟨𝜇[𝑥].𝑐 |− [𝑉 ]⟩ →𝛽 𝑐[𝑥 := 𝑉 ]

⟨𝜇(𝛼, 𝛽).𝑐 |− (𝑒, 𝑓)⟩ →𝛽 𝑐[𝛼 := 𝑒, 𝛽 := 𝑓 ]
⟨𝜇{𝛼}.𝑐 |− {𝑆}⟩ →𝛽 𝑐[𝛼 := 𝑆]

𝜇𝛼𝜀.⟨𝑡 |𝜀 𝛼⟩ →𝜂 𝑡
𝜇̃𝑥𝜀.⟨𝑥 |𝜀 𝑒⟩ →𝜂 𝑒

𝜇[𝑥].⟨𝑉 |− [𝑥]⟩ →𝜂 𝑉
𝜇(𝛼, 𝛽).⟨𝑉 |− (𝛼, 𝛽)⟩ →𝜂 𝑉
𝜇{𝛼}.⟨𝑉 |− {𝛼}⟩ →𝜂 𝑉
𝜇̃ * .⟨* |+ 𝑆⟩ →𝜂 𝑆

𝜇̃(𝑥, 𝑦).⟨(𝑥, 𝑦) | 𝑆⟩ →𝜂 𝑆
𝜇̃(𝜄1 𝑥.⟨𝜄1 𝑥 |𝜀1 𝑆⟩ | 𝜄2 𝑦.⟨𝜄2 𝑦 |𝜀2 𝑆⟩) →𝜂 𝑆

𝜇̃2𝑥.⟨2𝑥 |2 𝑆⟩ →𝜂 𝑆
𝜇̃{𝑥}.⟨{𝑥} |+ 𝑆⟩ →𝜂 𝑆

We oriented these rules as reductions instead of expansions because we want to do untyped
reductions. In this direction, they have the property of subject reduction. They are not confluent,
because for example, one has 𝜇̃(𝑥, 𝑦).𝑐[𝑧 := (𝑥, 𝑦)]←𝛽 𝜇̃(𝑥, 𝑦).⟨(𝑥, 𝑦) |+ 𝜇̃𝑧+.𝑐⟩ →𝜂 𝜇̃𝑧

+.𝑐, which
cannot always be joined. However, following [Mun17], we will restrict the reduction →𝛽𝜂 to the
reduction → which allows all 𝛽-reductions, but restrict the 𝜂-rules and keep only the one of
𝜇𝛼𝜀 and 𝜇̃𝑥𝜀. The reflexive, symmetric and transitive closure of → will also be noted ∼=.

Lemma 2 (Confluence). The reduction → is confluent, as it is a weakly orthogonal rewrite
system [OR94].

3.3. Typing

Types : 𝐴,𝐵 = 1 𝐴⊗𝐵 𝐴⊕𝐵 □𝐴 ⇓𝐴 ¬𝐴 𝐴O𝐵 ⇑𝐴
𝜛 : 𝜛(𝐴) = 2 𝜛(𝐴)⊙𝜛(𝐵) 𝜛(𝐴)⊙𝜛(𝐵) 2 𝜛(𝐴)⋆ − − −

where 𝜛(𝐴)⋆ =
{︃
2 if 𝜛(𝐴) = 2

+ else
.

To the connectives of linear logic without the exponentials, we added a connective □,
representing a comonad. However, the system is not linear: that is way the comonad is □ and
not !. Thus, even though 𝐴⊕𝐵 and 𝐴O𝐵 are logically equivalent, they are not isomorphic and
their reduction rules differ. Types have a polarity, which is positive or negative. Additionally,

1𝑥, 𝑦, 𝛼 and 𝛽 must not be free in 𝑉 , 𝑆, 𝑡 or 𝑒.
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positive types can be modal: that means that they also have a coalgebra structure for the □.
We note 𝜛(𝐴) = − for negative types, 𝜛(𝐴) = + for positive types which are not modal, and
𝜛(𝐴) = 2 for modal types. Positive types correspond to call-by-value types, and negative ones
to call-by-name types. Like before, we define 2 ⊙ 2 = 2 and 𝜀 ⊙ 𝜀′ = + if 𝜀, 𝜀′ ∈ {2,+,−}
and (𝜀, 𝜀′) ̸= (2,2).

We define the type of booleans B to be the type 1⊕ 1, with its two constructors true := 𝜄1 *
and false := 𝜄2 *.

One can see that there is no function types in this system. The type 𝐴 → 𝐵 can be
macro-defined as ¬𝐴O𝐵, with O representing the negative disjunction ; values of type 𝐴→ 𝐵
are introduced by 𝜇(𝑎 · 𝛽).𝑐 := 𝜇(𝛼, 𝛽).⟨𝜇[𝑎].𝑐 |− 𝛼⟩ — in call-by-name, 𝜆𝑥.𝑡 will be defined
as 𝜇(𝑥 · 𝛽).⟨J𝑡K |− 𝛽⟩: the idea that a value of type 𝐴→ 𝐵 captures a value of type 𝐴 and a
continuation of type 𝐵: the returned value must be sent to this continuation. Stacks of type
𝐴→ 𝐵 are introduced by 𝑉 · 𝑆 := ([𝑉 ], 𝑆). The idea is that a stack of type 𝐴→ 𝐵 consists of
a value of type 𝑉 on top of a stack of type 𝐵, which represent the stack on which the result of
the function will run: for example, 𝑡 𝑢 will be translated as 𝜇𝛽−.⟨J𝑡K |− J𝑢K · 𝛽⟩ (J𝑢K is a value
because in call-by-name, every term is translated as a value of negative type).

We added explicit polarity shifts ⇓ and ⇑. It is possible to express them inside the system
because ⇓𝐴 ≃ 𝐴 ⊗ 1 and ⇑𝐴 ≃ 1 → 𝐴, but having them as explicit connectives gives us a
better CPS translation: we can simply erase them.

3.3.1. Rules

We consider the typing rules given in fig. 2. There are five typing judgments: Γ | Θ ⊢ 𝑉 : 𝐴; Δ,
Γ | Θ ⊢ 𝑡 : 𝐴 | Δ, Γ | Θ;𝑆 : 𝐴 ⊢ Δ, Γ | Θ | 𝑒 : 𝐴 ⊢ Δ and 𝑐 : (Γ | Θ ⊢ Δ).

The four firsts read as follows: “in the context Γ | Θ ⊢ Δ, 𝑉 , respectively 𝑡, 𝑆 or 𝑒 is a
value, respectively a term, a stack or an environment of type 𝐴”. The last one is read: “𝑐 is a
command in the context Γ | Θ ⊢ Δ”.

Sequents are of the shape Γ | Θ ⊢ Δ with three contexts Γ, Θ and Δ, where Γ is the
usual context, Θ is the modal context, as seen in the previous section, and Δ is a co-context,
consisting of co-variables 𝛼 : 𝐴, representing continuations. Indeed, following the Curry-Howard
correspondence for classical logic, we know that formulas on the right-hand side of the ⊢
corresponds to continuations variables. This is to be compared with the usual 𝜆-calculus
because it is the syntax for intuitionistic logic where there is always at most one formula on
the right. Lastly, sequents are also optionally composed of a distinguished zone (except for
commands judgments), which can be left or right, and contains at most one formula. Intuitively,
the formula in this zone is the one we are working on.

When writing Γ,Γ′, Θ,Θ′ or Δ,Δ′, we suppose that Γ and Γ′, Θ and Θ′ and Δ and Δ′ are
disjoint.

Γ2 is the restriction of Γ to the types 𝐴 such that 𝜛(𝐴) = 2.
We define renamings 𝜃 ∈ R(Γ | Θ ⊢ Δ ⇒ Γ′ | Θ′ ⊢ Δ′): 𝜃 is a function between variables

and covariables such that 𝑥 : 𝐴 ∈ Γ then 𝜃(𝑥) : 𝐴 ∈ Γ′, if 𝑥 : 𝐴 ∈ Θ then 𝜃(𝑥) : 𝐴 ∈ Θ′ and if
𝛼 : 𝐴 ∈ Δ then 𝜃(𝛼) : 𝐴 ∈ Δ′.

Lemma 3 (Restriction to free variables). By induction, one can show that if Γ | Θ ⊢ 𝑉 : 𝐴; Δ,
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𝑥 : 𝐴 | · ⊢ 𝑥 : 𝐴; · · | 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴; · · | · | 𝛼 : 𝐴 ⊢ 𝛼 : 𝐴
Γ | Θ ⊢ 𝑉 : 𝐴+; Δ
Γ | Θ ⊢ 𝑉 : 𝐴+ | Δ

Γ | Θ;𝑆 : 𝐴− ⊢ Δ
Γ | Θ | 𝑆 : 𝐴− ⊢ Δ

𝑐 : (Γ | Θ ⊢ 𝛼 : 𝐴+,Δ)
Γ | Θ ⊢ 𝜇𝛼+.𝑐 : 𝐴+ | Δ

𝑐 : (Γ | Θ ⊢ 𝛼 : 𝐴−,Δ)
Γ | Θ ⊢ 𝜇𝛼−.𝑐 : 𝐴−; Δ

Γ | Θ ⊢ 𝑉 : 𝐴+; Δ Γ′ | Θ′ | 𝑒 : 𝐴+ ⊢ Δ′

⟨𝑉 |+ 𝑒⟩ : (Γ,Γ′ | Θ,Θ′ ⊢ Δ,Δ′)
Γ | Θ ⊢ 𝑡 : 𝐴− | Δ Γ′ | Θ′;𝑆 : 𝐴− ⊢ Δ′

⟨𝑡 |− 𝑆⟩ : (Γ,Γ′ | Θ,Θ′ ⊢ Δ,Δ′)
𝑐 : (Γ, 𝑥 : 𝐴+ | Θ ⊢ Δ)
Γ | Θ; 𝜇̃𝑥+.𝑐 : 𝐴+ ⊢ Δ

𝑐 : (Γ, 𝑥 : 𝐴− | Θ ⊢ Δ)
Γ | Θ; 𝜇̃𝑥−.𝑐 : 𝐴− ⊢ Δ · | · ⊢ * : 1; ·

𝑐 : (Γ | Θ ⊢ Δ)
Γ | Θ; 𝜇̃ ⋆ .𝑐 : 1 ⊢ Δ

Γ | Θ ⊢ 𝑉 : 𝐴; Δ
Γ | Θ ⊢ {𝑉 } : ⇓𝐴; Δ

𝑐 : (Γ, 𝑥 : 𝐴 | Θ ⊢ Δ)
Γ | Θ; 𝜇̃{𝑥}.𝑐 : ⇓𝐴 ⊢ Δ

Γ | Θ;𝑆 : 𝐴 ⊢ Δ
Γ | Θ; {𝑆} : ⇑𝐴 ⊢ Δ

𝑐 : (Γ | Θ ⊢ 𝛼 : 𝐴,Δ)
Γ | Θ ⊢ 𝜇{𝛼}.𝑐 : ⇑𝐴; Δ

Γ | Θ ⊢ 𝑉 : 𝐴; Δ Γ′ | Θ′ ⊢𝑊 : 𝐵; Δ′

Γ,Γ′ | Θ,Θ′ ⊢ (𝑉,𝑊 ) : 𝐴⊗𝐵; Δ,Δ′

𝑐 : (Γ, 𝑥 : 𝐴, 𝑦 : 𝐵 | Θ ⊢ Δ)
Γ | Θ; 𝜇̃(𝑥, 𝑦).𝑐 : 𝐴⊗𝐵 ⊢ Δ

Γ | Θ ⊢ 𝑉 : 𝐴𝑖; Δ
Γ | Θ ⊢ 𝜄𝑖 𝑉 : 𝐴1 ⊕𝐴2; Δ

𝑐 : (Γ, 𝑥 : 𝐴 | Θ ⊢ Δ) 𝑐′ : (Γ, 𝑦 : 𝐵 | Θ ⊢ Δ)
Γ | Θ; 𝜇̃(𝜄1 𝑥.𝑐 | 𝜄2 𝑦.𝑐′) : 𝐴⊕𝐵 ⊢ Δ

𝑐 : (Γ | Θ ⊢ 𝛼 : 𝐴, 𝛽 : 𝐵,Δ)
Γ | Θ ⊢ 𝜇(𝛼, 𝛽).𝑐 : 𝐴O𝐵; Δ

Γ | Θ | 𝑒 : 𝐴 ⊢ Δ Γ′ | Θ′ | 𝑓 : 𝐵 ⊢ Δ′

Γ,Γ′ | Θ,Θ′ | (𝑒, 𝑓) : 𝐴O𝐵 ⊢ Δ,Δ′

𝑐 : (Γ, 𝑥 : 𝐴 | Θ ⊢ Δ)
Γ | Θ ⊢ 𝜇[𝑥].𝑐 : ¬𝐴; Δ

Γ | Θ ⊢ 𝑉 : 𝐴; Δ
Γ | Θ; [𝑉 ] : ¬𝐴 ⊢ Δ

Γ2 | Θ ⊢ 𝑉 : 𝐴; ·
Γ2 | Θ ⊢ 2𝑉 : □𝐴; ·

𝑐 : (Γ, 𝑥 : 𝐴 | Θ ⊢ Δ)
Γ | Θ; 𝜇̃2𝑥.𝑐 : □𝐴 ⊢ Δ

Γ | Θ ⊢ 𝑉 : 𝐴; Δ
Γ′ | Θ′ ⊢ 𝜃(𝑉 ) : 𝐴; Δ′

Γ | Θ ⊢ 𝑡 : 𝐴 | Δ
Γ′ | Θ′ ⊢ 𝜃(𝑡) : 𝐴; Δ′

Γ | Θ;𝑆 : 𝐴 ⊢ Δ
Γ′ | Θ′; 𝜃(𝑆) : 𝐴 ⊢ Δ′

Γ | Θ | 𝑒 : 𝐴 ⊢ Δ
Γ′ | Θ′ | 𝜃(𝑒) : 𝐴 ⊢ Δ′

𝑐 : (Γ | Θ ⊢ Δ)
𝜃(𝑐) : (Γ′ | Θ′ ⊢ Δ′)

Figure 2: Typing rules of the system L□
pol

or 𝑐 : (Γ | Θ ⊢ Δ) or Γ | Θ | 𝑒 : 𝐴 ⊢ Δ, etc., one can restrict the context Γ | Θ ⊢ Δ to the free
variables of 𝑉 , 𝑐, 𝑒, etc.

Indeed, we can always restrict 𝜃 to be a surjective function in the renaming rule.

Lemma 4 (Restriction of modal values). We can also show that if Γ | Θ ⊢ 𝑉 : 𝐴; Δ where
𝜛(𝐴) = 2, then Γ2 | Θ ⊢ 𝑉 : 𝐴; ·.

For the proof, it is enough to show that free variables of a modal value are all of modal type,
or belongs to Θ. Clearly, this is true. We need 𝑉 to be a value: this is not true, for example,
if we consider the 𝑧 : 𝐴 ⊗ 𝐵 | · ⊢ 𝜇𝛼+.⟨𝑧 |+ 𝜇̃(𝑥, 𝑦).⟨𝑥 |+ 𝛼⟩⟩ : 𝐴; · which retrieves the first
projection of 𝑧, where 𝐴 is modal but 𝐵 is not, because then, 𝐴 ⊗ 𝐵 is not modal, so Γ□ is
empty.

3.3.2. Substitution

Definition 1 (Typed substitution). 𝜎 : (Γ | Θ ⊢ Δ)⇒ (Γ′ | Θ′ ⊢ Δ′) is a typed substitution if:
• for every 𝑥 : 𝐴 ∈ Γ, 𝜎(𝑥) is a value such that Γ′ | Θ′ ⊢ 𝜎(𝑥) : 𝐴; Δ′ ;
• for every 𝑥 : 𝐴 ∈ Θ, 𝜎(𝑥) is a value such that Γ′2 | Θ′ ⊢ 𝜎(𝑥) : 𝐴; · (what we really want

is that Γ′ | Θ′ ⊢ 2𝜎(𝑥) : □𝐴; Δ′) ;
• for every 𝛼 : 𝐴 ∈ Δ, 𝜎(𝛼) is a stack such that Γ | Θ;𝜎(𝛼) : 𝐴 ⊢ Δ.
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Lemma 5 (Compatibility of substitutions with typing). If 𝜎 : (Γ | Θ ⊢ Δ) ⇒ (Γ′ | Θ′ ⊢ Δ′)
then:

• Γ | Θ ⊢ 𝑉 : 𝐴; Δ =⇒ Γ′ | Θ′ ⊢ 𝜎(𝑉 ) : 𝐴; Δ′

• Γ | Θ ⊢ 𝑡 : 𝐴 | Δ =⇒ Γ′ | Θ′ ⊢ 𝜎(𝑡) : 𝐴 | Δ′

• Γ | Θ;𝑆 : 𝐴 ⊢ Δ =⇒ Γ′ | Θ′;𝜎(𝑆) : 𝐴 ⊢ Δ′

• Γ | Θ | 𝑒 : 𝐴 ⊢ Δ =⇒ Γ′ | Θ′ | 𝜎(𝑒) : 𝐴 ⊢ Δ′

• 𝑐 : (Γ | Θ ⊢ Δ) =⇒ 𝜎(𝑐) : (Γ′ | Θ′ ⊢ Δ′)

For the proof, see the section A.2.

3.3.3. Inversion

The renaming rules can be inserted everywhere, making induction on terms difficult. But
successive renaming rules can be composed, and one can always insert a dummy renaming rule
with the identity as renaming. Therefore, we can show the following inversion lemma:

Lemma 6 (Inversion). For every proof of Γ | Θ ⊢ (𝑉,𝑊 ) : 𝐴⊗𝐵; Δ there are sequents (Γ1 |
Θ1 ⊢ Δ1) and (Γ2 | Θ2 ⊢ Δ2), as well as a renaming 𝜃 ∈ R(Γ1,Γ2 | Θ1,Θ2 ⊢ Δ1,Δ2 ⇒ Γ | Θ ⊢ Δ)
and values 𝑉 ′ and 𝑊 ′ such that 𝜃((𝑉 ′,𝑊 ′)) = (𝑉,𝑊 ) and the proof can be written as follows:

Γ1 | Θ1 ⊢ 𝑉 ′ : 𝐴; Δ1 Γ2 | Θ2 ⊢𝑊 ′ : 𝐵; Δ2

Γ1,Γ2 | Θ1,Θ2 ⊢ (𝑉 ′,𝑊 ′) : 𝐴⊗𝐵; Δ1,Δ2

Γ | Θ ⊢ (𝑉,𝑊 ) : 𝐴⊗𝐵; Δ

One can show similar inversion lemmas for other connectives. For example, for variables
there is always a derivation of the following form:

𝑥 : 𝐴 | · ⊢ 𝑥 : 𝐴; ·
Γ, 𝑥 : 𝐴,Γ′ | Θ ⊢ 𝑥 : 𝐴; Δ

or
· | 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴; ·

Γ | Θ, 𝑥 : 𝐴,Θ′ ⊢ 𝑥 : 𝐴; Δ

3.3.4. Subject reduction

Equipped with the inversion lemma, one can show that if 𝑐 →𝛽𝜂 𝑐
′ et 𝑐 : (Γ | Θ ⊢ Δ), then

𝑐′ : (Γ | Θ ⊢ Δ), and similar results for values, terms, stacks and environments.

4. Refinement of the 𝜆□𝒞-calculus

In order to show that the system L□
pol indeed refines our previous 𝜆-calculus, we can show that

there is a translation L∙M from the 𝜆□𝒞-calculus to this system which exhibits the 𝜆□𝒞-calculus
constructions as macros in the L□

pol system, and a CPS translation J∙KL from this system to
the target 𝜆¬

□-calculus, factorizing the previous CPS translation, that is, the following diagram
commutes:

11



𝜆□𝒞 L□
pol

𝜆¬
□

L∙M

J∙K𝜆
J∙KL

From this diagram, we must understand than the system L□
pol is more fine-grained than

the 𝜆□𝒞-calculus, because everything that can be expressed in the 𝜆□𝒞-calculus can also be
macro-expressed in the system L□

pol, and every terms which are equalized in the translation into
the system L□

pol are also equalized through the CPS translation; yet because the translation
targets the 𝜆¬

□-calculus, we know that it this system is not “too powerful”, i.e. inconsistent,
because the 𝜆¬

□ does not prove ⊥.

Lemma 7. For all types 𝐴, J𝐴K𝜆 = JL𝐴MK+.
For all values 𝑉 , terms 𝑡 of non-⊥ type and terms 𝑢 of ⊥ type, and for all stacks 𝑆, we have:
• JL𝑉 MvK

L
v →

* J𝑉 K𝜆
v

• JL𝑡Mt(𝑆)KL
c →

* J𝑡K𝜆
t (J𝑆KL

s )

• JL𝑢M⊥KL
c →

* J𝑢K𝜆
⊥

For the proof, see section A.4 after having read this section.

4.1. The translation L∙M

The translation from 𝜆□𝒞 to L□
pol is quite straightforward. Once again, it is higher-order in order

to avoid administrative redexes, which can be erased immediately. The translation depends
on whether we have a value, a term or a term that returns ⊥. The translation of 𝒞 𝑡 simply
implement ¬¬𝐴→ 𝐴 in the system L□

pol.
Since the 𝜆□𝒞-calculus is in call-by-value, L𝑇 M has to be a positive type for every 𝑇 . Thus,

we translated 𝐴→ 𝐵 as ⇓(¬𝐴O𝐵) and ¬𝐴 as ⇓¬𝐴.
L1M = 1 L𝐴⊗𝐵M = L𝐴M ⊗ L𝐵M L𝐴⊕𝐵M = L𝐴M ⊕ L𝐵M
L□𝐴M = □L𝐴M L𝐴→ 𝐵M = ⇓(¬L𝐴MOL𝐵M) L¬𝐴M = ⇓(¬L𝐴M)
L𝑥Mv = 𝑥 L*Mv = * L(𝑉,𝑊 )Mv = (L𝑉 Mv, L𝑊 Mv) L𝜄𝑖 𝑉 Mv = 𝜄𝑖 L𝑉 Mv
L𝜆𝑎.𝑡Mv = {𝜇(𝛼, 𝛽).⟨𝜇[𝑎].L𝑡Mt(𝛽) |− 𝛼⟩} L𝜆⊥𝑎.𝑡Mv = {𝜇[𝑎].L𝑡M⊥}

L𝑉 Mt(𝑆) = ⟨L𝑉 Mv |+ 𝑆⟩
L𝒞 𝑡Mt(𝑆) = L𝑡Mt(𝜇̃{𝑥}.⟨𝑥 |− [{𝜇[𝑦].⟨𝑦 |+ 𝑆⟩}]⟩)
L𝑡 𝑉 Mt(𝑆) = L𝑡Mt(𝜇̃{𝑓}.⟨𝑓 |− ([L𝑉 Mv], 𝑆)⟩)
L𝑡⊥ 𝑉 M⊥ = L𝑡Mt(𝜇̃{𝑓}.⟨𝑓 |− [L𝑉 Mv]⟩)
Llet 𝑥 = 𝑡 in 𝑢Mt(𝑆) = L𝑡Mt(𝜇̃𝑥+.L𝑢Mt(𝑆))
Llet 𝑥 = 𝑡 in⊥ 𝑢M⊥ = L𝑡Mt(𝜇̃𝑥+.L𝑢M⊥)

We have that:
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• Γ | Θ ⊢ 𝑉 : 𝐴 =⇒ LΓM | LΘM ⊢ L𝑉 Mv : L𝐴M;
• Γ | Θ ⊢ 𝑡 : 𝐴 =⇒ L𝑡Mt(𝛼) : (LΓM | LΘM ⊢ 𝛼 : L𝐴M);
• Γ | Θ ⊢ 𝑡 : ⊥ =⇒ L𝑡M⊥ : (LΓM | LΘM ⊢ ·).

Lemma 8. If 𝑉 → 𝑉 ′, respectively 𝑡→ 𝑡′ and 𝑆 → 𝑆′ or 𝑡→ 𝑡′ then L𝑉 Mv
∼= L𝑉 ′Mv, respectively

L𝑡Mt(𝑆) ∼= L𝑡′Mt(𝑆′) or L𝑡M⊥
∼= L𝑡′M⊥, and we have the same theorem with →* instead of ∼= if the

contracted redex is not 𝐹 [𝒞 (𝜆⊥𝑘.𝑡)].

For the proof, see section A.3.

4.2. CPS translation

We will now devise the CPS translation for this calculus. First of all, we have two translations
for types; one gives the types of values, J∙K+, the other one gives the types of stacks, J∙K−.

J𝐴−K+ = ¬ J𝐴−K− J□𝐴K+ = □ J𝐴K+ J𝐴⊗𝐵K+ = J𝐴K+ ⊗ J𝐵K+ J⇓𝐴K+ = J𝐴K+

J1K+ = 1 J𝐴⊕𝐵K+ = J𝐴K+ ⊕ J𝐵K+

J𝐴+K− = ¬ J𝐴+K J¬𝐴K− = J𝐴K+ J𝐴O𝐵K− = J𝐴K− ⊗ J𝐵K− J⇑𝐴K− = J𝐴K−

In particular, for 𝐵 positive we have J¬𝐴O𝐵K+ = ¬(J𝐴K+ ⊗ ¬ J𝐵K+), which corresponds to
the usual call-by-value translation of arrows [App07, p. 12].

Then, we have the translations of values and stacks — J∙KL
v and J∙KL

s — which returns values,
and the translations of terms and environments — J∙KL

t (∙) and J∙KL
e (∙), which also take a

continuation (which is a value) and returns a term. Finally, commands are translated as terms
with J∙KL

c . We have that:

• Γ | Θ ⊢ 𝑉 : 𝐴; Δ =⇒ JΓK+ , JΔK− | Θ ⊢ J𝑉 KL
v : J𝐴K+

• Γ | Θ ⊢ 𝑡 : 𝐴 | Δ =⇒ JΓK+ , JΔK− , 𝑘 : J𝐴K− | Θ ⊢ J𝑡KL
t (𝑘) : ⊥

• Γ | Θ;𝑆 : 𝐴 ⊢ Δ =⇒ JΓK+ , JΔK− | Θ ⊢ J𝑆KL
s : J𝐴K−

• Γ | Θ | 𝑒 : 𝐴 ⊢ Δ =⇒ JΓK+ , JΔK− , 𝑘 : J𝐴K+ | Θ ⊢ J𝑒KL
e (𝑘) : ⊥

• 𝑐 : (Γ | Θ ⊢ Δ) =⇒ JΓK+ , JΔK− | Θ ⊢ J𝑐KL
c : ⊥

J𝑥KL
v = 𝑥

q
𝜇̃𝑥+.𝑐

yL
s = 𝜆⊥𝑥. J𝑐KL

c
J*KL

v = * J𝜇̃ * .𝑐KL
s = 𝜆⊥ * . J𝑐KL

c
J(𝑉,𝑊 )KL

v = (J𝑉 KL
v , J𝑊 KL

v ) J𝜇̃(𝑥, 𝑦).𝑐KL
s = 𝜆⊥(𝑥, 𝑦). J𝑐KL

c
J𝜄𝑖 𝑉 KL

v = 𝜄𝑖 J𝑉 KL
v J𝜇̃(𝜄1 𝑥.𝑐 | 𝜄2 𝑦.𝑐′)KL

s = 𝜆⊥𝑧.match 𝑧 with⊥ {𝜄1 𝑥. J𝑐KL
c | 𝜄2 𝑦. J𝑐′KL

c }
J2𝑉 KL

v = 2 J𝑉 KL
v J𝜇̃2𝑥.𝑐KL

s = 𝜆⊥2𝑥. J𝑐KL
c

J{𝑉 }KL
v = J𝑉 KL

v J𝜇̃{𝑥}.𝑐KL
s = 𝜆⊥𝑥. J𝑐KL

c
J𝛼KL

s = 𝛼 J𝜇𝛼−.𝑐KL
v = 𝜆⊥𝛼. J𝑐KL

c
J[𝑉 ]KL

s = J𝑉 KL
v J𝜇[𝑥].𝑐KL

v = 𝜆⊥𝑥. J𝑐KL
c

J(𝑆, 𝑇 )KL
s = (J𝑆KL

s , J𝑇 KL
s ) J𝜇(𝛼, 𝛽).𝑐KL

v = 𝜆⊥(𝛼, 𝛽). J𝑐KL
c

J{𝑆}KL
s = J𝑆KL

s J𝜇{𝛼}.𝑐KL
v = 𝜆⊥𝛼. J𝑐KL

c

J𝑉 KL
t (𝑀) = 𝑀⊥ J𝑉 KL

v
q
𝜇𝛼+.𝑐

yL
+ (𝑀) = let 𝛼 = 𝑀 in⊥ J𝑐KL

c
J𝑆KL

− (𝑀) = 𝑀⊥ J𝑆KL
s J𝜇̃𝑥−.𝑐KL

− (𝑀) = let 𝑥 = 𝑀 in⊥ J𝑐KL
cq

⟨𝑡 |+ 𝑆⟩
yL

c = J𝑡KL
+ (J𝑆KL

s ) J⟨𝑉 |− 𝑒⟩KL
c = J𝑒KL

− (J𝑉 KL
v )
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Lemma 9 (J∙KL is a simulation). If 𝑡→ 𝑡′, respectively 𝑀 →𝑀 ′, 𝑉 → 𝑉 ′, 𝑒→ 𝑒′, 𝑀 →𝑀 ′,
𝑆 → 𝑆′ or 𝑐→ 𝑐′ with 𝑡, 𝑉 , 𝑒, 𝑆 and 𝑐 well-typed, and if 𝑀 is a value, then J𝑡KL

t (𝑀)→ J𝑡′KL
t (𝑀),

respectively J𝑡KL
t (𝑀)→ J𝑡KL

t (𝑀 ′), J𝑉 KL
v → J𝑉 ′KL

v , etc.

However, note that this translation is not compatible with other 𝜂-rules as the one of 𝜇̃(𝑥, 𝑦),
because we did not add other 𝜂-rules in 𝜆□𝒞. Nevertheless, it would work if they were added.

Proof. For 𝛽-reduction, it is more or less obvious. For the 𝜂-reduction of 𝜇𝛼+ and 𝜇̃𝑥−, too. For
𝜇𝛼− and 𝜇̃𝑥+, we need to use the 𝜂-rule for functions: J𝜇𝛼−.⟨𝑉 |− 𝛼⟩KL

v = 𝜆⊥𝛼.(J𝑉 KL
v )⊥ 𝛼→

J𝑉 KL
v because J𝑉 KL

v is a value and 𝛼 is not free 𝑉 .

5. Normalization

We now would now like to prove the consistency of the system L□
pol. As said in the previous

section, thanks to the CPS translation, we know that it does not prove ⊥. Moreover, we can
prove the following result:

Lemma 10 (Strong normalization). The reduction → is strongly normalizing.

Proof. The J∙KL (∙) is a simulation, and the target system is a call-by-value calculus with a □
operator, sums, pairs, unit and functions that never returns. It is standard that the system
without □ is strongly normalizing, and the 𝜆¬

□-calculus can be translated into this subsystem
by translating □𝐴 by 𝐴 ⊗ 1, 2𝑉 by (𝑉, *) and let 2𝑥 = 𝑡 in⊥ 𝑢 by let (𝑥,_) = 𝑡 in⊥ 𝑢, and
this translation is also a simulation. Thus the reduction → is strongly normalizing.

This allows us to prove various property like consistency of the logic, cut-elimination (every
term reduce to a term where all cuts are against a variable or a covariable), the subformula
property (every sequents admit a proof in which all the formulas that appears in the proof are
subformulas of the initial sequent).

The 𝜆¬
□-calculus lacks enough 𝜂-rules, thus, we cannot yet prove the computational adequacy

of the system, that is, that ⟨true |+ 𝛾⟩ ̸=𝛽𝜂 ⟨false |+ 𝛾⟩. We will get this property later with
a model. However, we can already prove, using confluence and strong normalization, that
⟨true |+ 𝛾⟩ ∼= ⟨false |+ 𝛾⟩ is false.

The following lemma will be useful later:

Lemma 11 (Closed normal forms of modal type). If 𝑡 is a closed term of modal type, then
𝑡→* 𝑉 with 𝑉 some closed value (of the same type).

Proof. Suppose · | · ⊢ 𝑡 : 𝐴 | · with 𝜛(𝐴) = 2. Let 𝑢 be the normal form of 𝑡: 𝑡 →* 𝑢. By
subject reduction, · | · ⊢ 𝑢 : 𝐴 | ·. Either 𝑢 is a value and we are done ; or 𝑢 = 𝜇𝛼+.𝑐 for some 𝑐.
In this case, 𝑐 cannot be written as ⟨𝑣 |𝜀 𝑒⟩ where 𝑣 is not a variable and 𝑒 not a covariable, for
then there would be a 𝛽-rule which could be applied. For the same reason, either 𝑣 is a value
or 𝑒 is a stack. Also, 𝑣 cannot be a variable because there is no variable in the context. This
means that 𝑒 = 𝛼, 𝑣 is a value 𝑉 and 𝜀 = +, because 𝛼 is the only covariable in the context
and 𝐴 is positive. Moreover, 𝐴 is modal and 𝑉 is a value: thus, by the lemma 4, 𝛼 is not free
in 𝑉 . Thus, 𝑢 = 𝜇𝛼+.⟨𝑉 |+ 𝛼⟩ → 𝑉 , which is absurd because 𝑢 is in normal form.
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6. Thunkability

Problems arise when mixing dependent types in presence of effectful terms, in particular
involving control operators, as shown by [Her05]. However, we can define a class of terms that
are not strictly pure but whose effects are “contained”; for those, the evaluation order does not
matter, and the the substitution is well-behaved. Following Fürhmann terminology, we call
them thunkable [Füh99]. In particular, all values are thunkable.

Definition 2 (Thunkability). A term 𝑡 in a context Γ | Θ ⊢ Δ is thunkable for a model J·K if
for every environment 𝑒 in a context Γ′ | Θ′ ⊢ Δ′ and command 𝑐 in a context Γ′′ | Θ′′ ⊢ Δ′′,
and for all 𝜀1 and 𝜀2, one has:

J⟨𝑡 |𝜀1 𝜇̃𝑎𝜀1 .⟨𝜇𝛽𝜀2 .𝑐 |𝜀2 𝑒⟩⟩K =
q
⟨𝜇𝛽𝜀2 .⟨𝑡 |𝜀1 𝜇̃𝑎𝜀1 .𝑐⟩ |𝜀2 𝑒⟩ : (Γ,Γ′,Γ′′ ⊢ Δ,Δ′,Δ′′)

y

Note that this equality is automatically verified whenever 𝜀1 = −, 𝜀2 = +, 𝑡 is value or 𝑒 is a
stack.

It may be better to give an example: in the more usual call-by-name 𝜆-calculus with let’s,
if a term 𝑡 is thunkable then “let 𝑥 = 𝑡 in 𝜆𝑦.𝑥” and “𝜆𝑦.𝑡” have the same semantics. It is of
course true if all terms are pure: but if we add exceptions to the languages, or non-termination,
and if the semantics is expressive enough, then if 𝑡 is thunkable, it cannot raise an exception, it
must terminate and must use the continuations provided by 𝒞 linearly.

There exists non thunkable terms in the syntactic model, which interpret terms as their
quotient through =𝛽𝜂. For example, consider the term 𝑡 = 𝜇𝛼+.⟨true |1 𝛾⟩ and the environment
𝑒 = 𝜇̃𝑏−.⟨false |1 𝛾⟩, and let 𝑐 be any command. We have · | · ⊢ 𝑡 : 𝐴+ ⊢ 𝛾 : B and
· | · | 𝑒 : 𝐵− ⊢ 𝛾 : B for any 𝐴+ and 𝐵−.

We have
⟨𝑡 |+ 𝜇̃𝑎+.⟨𝜇𝛽−.𝑐 |− 𝑒⟩⟩ → ⟨true |1 𝛾⟩

but
⟨𝜇𝛽−.⟨𝑡 |+ 𝜇̃𝑎+.𝑐⟩ |− 𝑒⟩ → ⟨false |1 𝛾⟩

and these two commands should clearly not be convertible if the calculus is consistent, so 𝑡 is
not thunkable. As remarked earlier, we see that 𝜇𝛼+.⟨true |+ 𝛾⟩ is an effectful term because
the continuation 𝛼 is not used linearly.

Thunkability is not a syntactic criterion, thus we cannot rely on it to define a dependent
type theory. Moreover, we would like a more type-theoretical approach of thunkability, which is
expressive enough for practical use. What we will show is that this theory enables us to build a
sound model in which there is a large class of thunkable terms: the terms that are of modal
type and typed in a modal context are thunkable, and that this fragment contains intuitionistic
logic.

7. Observational equivalence

We devise an observational equivalence for our calculus, in order to build a model. We will
define a relation //𝛾:𝐺 between commands indexed by the ground context · | · ⊢ 𝛾 : 𝐺 in which
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they are defined, where 𝐺 is a ground type, inspired by [Pit04]. Intuitively, a ground type is a
type that one can directly observe and whose values can be compared easily, like booleans and
contrary to functions. Formally, it is a type built without using the negative connectives. From
now on, 𝐺 will always denote a ground type. The relation // is defined by 𝑐 //𝛾:𝐺 𝑐

′ if there
exists a closed value 𝑉 of type 𝐺 such that 𝑐 →* ⟨𝑉 |+ 𝛾⟩ ←* 𝑐′. In this case, 𝑉 is unique,
because values of ground types contain no redex. The relation // is saturated, that is, it is
stable by antireduction : if 𝑐1 // 𝑐2, 𝑐′

1 →* 𝑐1 and 𝑐′
2 →* 𝑐2 then 𝑐′

1 // 𝑐′
2.

7.1. Definition of the model

Definition 3 (Orthogonality). Given a type 𝐴, for each ground type 𝐺 we can define an
orthogonality relation between pairs of terms of type 𝐴 and pairs of stacks of type 𝐴 if 𝐴
is positive or between pairs of values of type 𝐴 and pairs of environments of type 𝐴 if 𝐴 is
negative, where they are all typed in the context · | · ⊢ 𝛾 : 𝐺. We have (𝑡, 𝑡′)⊥+(𝑆, 𝑆′) ⇐⇒
⟨𝑡 |+ 𝑆⟩ //𝛾:𝐺⟨𝑡′ |+ 𝑆′⟩ if 𝐴 is positive and (𝑉, 𝑉 ′)⊥−(𝑒, 𝑒′) ⇐⇒ ⟨𝑉 |− 𝑒⟩ //𝛾:𝐺⟨𝑉 ′ |− 𝑒′⟩ if 𝐴 is
negative.

//𝛾:𝐺 induces a Galois connection between relations on terms of type 𝐴 and relations on
stacks of type 𝐴 in the context · | · ⊢ 𝛾 : 𝐺 if 𝐴 is positive, and one between relations on values
of type 𝐴 and relations on environments of type 𝐴 in the same context if 𝐴 is negative.

For example, if 𝑅 is a relation on terms of type 𝐴 in this context, with 𝐴 positive, 𝑅⊥+

is the relation on stacks defined by 𝑆𝑅⊥+
𝑆′ ⇐⇒ ∀(𝑡, 𝑡′) ∈ 𝑅, (𝑡, 𝑡′)⊥+(𝑆, 𝑆′). There is a

similarly defined operation 𝑅⊥+ if 𝑅 is a relation on stacks, and we have that 𝑅 ⊆ 𝑅⊥+⊥+ ,
𝑅⊥+ = 𝑅⊥+⊥+⊥+ , and if 𝑅 ⊆ 𝑆 then 𝑆⊥+ ⊆ 𝑅⊥+ . We also have a similar operation 𝑅⊥− if 𝐴
is negative.

This definition by orthogonality is inspired by classical realizability, which has been introduced
by Krivine [Kri09] and adapted by Munch-Maccagnoni [Mun09; Mun17] to a polarised setting.

First, let’s define the following relations between values and stacks defined in a context
· | · ⊢ 𝛾 : 𝐺: for each type 𝐴, if 𝐴 is positive, then ‖𝐴‖𝛾:𝐺 is a relation between values, else, if
it is negative, it is a relation between stacks of type 𝐴. We will at the same time define the
relations T (𝐴)𝛾:𝐺, V (𝐴)𝛾:𝐺, E (𝐴)𝛾:𝐺 and S (𝐴)𝛾:𝐺 between terms, values, environments and
stacks of type 𝐴, and we have that ‖𝐴‖𝛾:𝐺 ⊆ V (𝐴)𝛾:𝐺 if 𝐴 is positive and ‖𝐴‖𝛾:𝐺 ⊆ S (𝐴)𝛾:𝐺 if
𝐴 is negative.

• V (𝐴)𝛾:𝐺 is the restriction of T (𝐴)𝛾:𝐺 to values;
• S (𝐴)𝛾:𝐺 is the restriction of E (𝐴)𝛾:𝐺 to stacks;

• T (𝐴+)𝛾:𝐺 = S (𝐴+)⊥+

𝛾:𝐺 = ‖𝐴+‖⊥
+⊥+

𝛾:𝐺 ;

• T (𝐴−)𝛾:𝐺 = ‖𝐴−‖⊥
−

𝛾:𝐺 (note that in this case, T (𝐴−)𝛾:𝐺 = V (𝐴−)𝛾:𝐺);

• E (𝐴−)𝛾:𝐺 = V (𝐴−)⊥−

𝛾:𝐺 = ‖𝐴−‖⊥
−⊥−

𝛾:𝐺 ;

• E (𝐴+)𝛾:𝐺 = ‖𝐴+‖⊥
+

𝛾:𝐺 (and here again, E (𝐴+)𝛾:𝐺 = S (𝐴+)𝛾:𝐺);
• * ‖1‖𝛾:𝐺 *;
• (𝑉,𝑊 ) ‖𝐴⊗𝐵‖𝛾:𝐺 (𝑉 ′,𝑊 ′) ⇐⇒ 𝑉 V (𝐴)𝛾:𝐺 𝑉 ′ and 𝑊 V (𝐵)𝛾:𝐺 𝑊 ′

• 𝜄𝑖 𝑉 ‖𝐴1 ⊕𝐴2‖ 𝜄𝑖 𝑉 ⇐⇒ 𝑖 ∈ {1, 2} and 𝑉 V (𝐴𝑖)𝛾:𝐺 𝑉 ′

16



• 2𝑉 ‖□𝐴‖𝛾:𝐺 2𝑉 ′ ⇐⇒ 𝑉 V (𝐴)𝛾:𝐺 𝑉 ′ (note that 𝑉 and 𝑉 ′ are closed, because 2𝑉 and
2𝑉 ′ are well-typed)

• [𝑉 ] ‖¬𝐴‖𝛾:𝐺 [𝑉 ′] ⇐⇒ 𝑉 V (𝐴)𝛾:𝐺 𝑉 ′

• (𝑆, 𝑇 ) ‖𝐴O𝐵‖𝛾:𝐺 (𝑆′, 𝑇 ′) ⇐⇒ 𝑆 S (𝐴)𝛾:𝐺 𝑆′ and 𝑇 S (𝐵)𝛾:𝐺 𝑇 ′

These relations will serve as a base to define a family of equivalence relations between values,
terms, stacks, environments and commands. From now, we may drop the subscript 𝛾 : 𝐺 when
deemed not necessary.

The relation V (𝐴) and S (𝐴) can be extended to substitutions targeting a context of the
form · | · ⊢ 𝛾 : 𝐺 : namely, 𝜎 JΓ | Θ ⊢ ΔK𝛾:𝐺 𝜎′ if 𝜎 and 𝜎′ are typed substitutions from the
context Γ | Θ ⊢ Δ to · | · ⊢ 𝛾 : 𝐺 such that if 𝑥 : 𝐴 ∈ Γ then 𝜎(𝑥) V (𝐴) 𝜎′(𝑥), if 𝑥 : 𝐴 ∈ Θ then
𝜎(𝑥) V (𝐴) 𝜎′(𝑥) and 𝜎(𝑥) and 𝜎′(𝑥) are typable in the empty context, and if 𝛼 : 𝐴 ∈ Δ then
𝜎(𝛼) S (𝐴) 𝜎′(𝛼).

Definition 4 (Observational equivalence). It allows to define a relation ≃ by:
• Γ | Θ ⊢ 𝑉 ≃ 𝑉 ′ : 𝐴; Δ ⇐⇒ ∀𝐺,∀𝜎 JΓ | Θ ⊢ ΔK𝛾:𝐺 𝜎′, 𝜎(𝑉 ) V (𝐴)𝛾:𝐺 𝜎′(𝑉 ′)

• Γ | Θ ⊢ 𝑡 ≃ 𝑡′ : 𝐴 | Δ ⇐⇒ ∀𝐺,∀𝜎 JΓ | Θ ⊢ ΔK𝛾:𝐺 𝜎′, 𝜎(𝑡) T (𝐴)𝛾:𝐺 𝜎′(𝑡′)

• Γ | Θ;𝑆 ≃ 𝑆′ : 𝐴 ⊢ Δ ⇐⇒ ∀𝐺,∀𝜎 JΓ | Θ ⊢ ΔK𝛾:𝐺 𝜎′, 𝜎(𝑆) S (𝐴)𝛾:𝐺 𝜎′(𝑆′)

• Γ | Θ | 𝑒 ≃ 𝑒′ : 𝐴 ⊢ Δ ⇐⇒ ∀𝐺,∀𝜎 JΓ | Θ ⊢ ΔK𝛾:𝐺 𝜎′, 𝜎(𝑒) E (𝐴)𝛾:𝐺 𝜎′(𝑒′)

• 𝑐 ≃ 𝑐′ : (Γ | Θ ⊢ Δ) ⇐⇒ ∀𝐺, ∀𝜎 JΓ | Θ ⊢ ΔK𝛾:𝐺 𝜎′, 𝜎(𝑐) //𝛾:𝐺 𝜎
′(𝑐′)

Remark 12. This definition corresponds to the “logical equivalence” of [Pit04]. He also
defines a “contextual equivalence”, which is the largest equivalence relation which is adequate,
compatible to typing and to substitutions, and a “ciu-equivalence” which has almost the same
definition as ≃, but with only one substitution, instead of two that are related. He then
procedes to show that they are all equal. We can also define these relations here and show
them equal to ≃; the proof will not be given here.

This relation enjoys the following properties:

Definition 5 (Typing compatibility). A relation is compatible with typing if one can apply
the typing rules, where terms, values, etc. in the context are replaced by pairs of terms, values,
commands, etc. which are ≃.

For example, one then has
· | ·;𝛼 ≃ 𝛼 ⊢ 𝛼 : 𝐴

or
𝑐1 ≃ 𝑐′

1 : (Γ, 𝑥 : 𝐴 | Θ ⊢ Δ) 𝑐2 ≃ 𝑐′
2 : (Γ, 𝑦 : 𝐵 | Θ ⊢ Δ)

Γ | Θ; 𝜇̃(𝜄1 𝑥.𝑐1 | 𝜄2 𝑦.𝑐2) ≃ 𝜇̃(𝜄1 𝑥.𝑐′
1 | 𝜄2 𝑦.𝑐′

2) : 𝐴⊕𝐵 ⊢ Δ

It is easy to show by induction on a typing derivation that relations which are compatible
with typing are also reflexive.

For the proof, see section B.1.
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Definition 6 (Substitution compatibility). One can extend the relation ≃ to substitutions,
saying that 𝜎 ≃ 𝜎′ : (Γ | Θ ⊢ Δ) ⇒ (Γ′ | Θ′ ⊢ Δ′) if 𝜎 and 𝜎′ are typed substitutions of type
(Γ | Θ ⊢ Δ)⇒ (Γ′ | Θ′ ⊢ Δ′) such that

• if 𝑥 : 𝐴 ∈ Γ then Γ′ | Θ′ ⊢ 𝜎(𝑥) ≃ 𝜎′(𝑥) : 𝐴; Δ′

• if 𝑥 : 𝐴 ∈ Γ then Γ′2 | Θ′ ⊢ 𝜎(𝑥) ≃ 𝜎′(𝑥) : 𝐴; ·
• if 𝛼 : 𝐴 ∈ Γ then Γ′ | Θ′;𝜎(𝛼) ≃ 𝜎′(𝛼) : 𝐴 ⊢ Δ′

Then we say that ≃ is compatible to substitutions if whenever 𝑉 ≃ 𝑉 ′ : 𝐴, respectively
𝑡 ≃ 𝑡′ : 𝐴, 𝑆 ≃ 𝑆′ : 𝐴, 𝑒 ≃ 𝑒′ : 𝐴 or 𝑐 ≃ 𝑐′ in a context Γ | Θ ⊢ Δ and 𝜎 ≃ 𝜎′ : (Γ | Θ ⊢ Δ) ⇒
(Γ′ | Θ′ ⊢ Δ′), then in the context Γ′ | Θ′ ⊢ Δ′ one has 𝜎(𝑉 ) ≃ 𝜎′(𝑉 ′) : 𝐴, 𝜎(𝑡) ≃ 𝜎′(𝑡′) : 𝐴,
𝜎(𝑆) ≃ 𝜎′(𝑆′) : 𝐴, 𝜎(𝑒) ≃ 𝜎′(𝑒′) : 𝐴 and 𝜎(𝑐) ≃ 𝜎′(𝑐′).

For the proof, see section B.2.

Definition 7 (Adequacy). The adequacy property says that ≃ is compatible with //. Formally,
it says that:

• · | · ⊢ 𝑉 ≃ 𝑉 ′ : 𝐴; 𝛾 : 𝐺 =⇒ 𝑉 V (𝐴)𝛾:𝐺 𝑉 ′

• · | · ⊢ 𝑡 ≃ 𝑡′ : 𝐴 | 𝛾 : 𝐺 =⇒ 𝑡 S (𝐴)⊥+

𝛾:𝐺 𝑡′

• · | ·;𝑆 ≃ 𝑆′ : 𝐴 ⊢ 𝛾 : 𝐺 =⇒ 𝑆 S (𝐴)𝛾:𝐺 𝑆′

• · | · | 𝑒 ≃ 𝑒′ : 𝐴 ⊢ 𝛾 : 𝐺 =⇒ 𝑒 V (𝐴)⊥−

𝛾:𝐺 𝑒′

• 𝑐 ≃ 𝑐′ : (· | · ⊢ 𝛾 : 𝐺) =⇒ 𝑐 //𝛾:𝐺 𝑐
′

For the proof, see section B.3.

Lemma 13. ≃ is an equivalence relation.

For the proof, see section B.4.

Definition 8 (Compatibility with =𝛽𝜂). If 𝑡 and 𝑢 are typed in some context Γ | Θ ⊢ Δ and
𝑡 =𝛽𝜂 𝑢 then Γ | Θ ⊢ 𝑡 ≃ 𝑢 | Δ. The same goes for values, stacks, environments and commands.

For the proof, see section B.5.

7.2. Consequences

The previous lemmas show that ≃ induces a model for the system L□
pol by quotienting typed

terms with ≃. Moreover, this model is sound, as ⟨true |+ 𝛾⟩ //∖ ⟨false |+ 𝛾⟩, which can be proven
through confluence of →. This entails that =𝛽𝜂 is consistent as an equation system.

We know have all what the ingredients needed to prove the first main theorem.

Theorem 1 (Modal terms are thunkable). If Γ2 | Θ ⊢ 𝑡 : 𝐴2 | ·, then 𝑡 is thunkable in the
observational model.

Proof. Let Γ′ | Θ′ | 𝑒 : 𝐵− ⊢ Δ′ and 𝑐 : (Γ′′ | Θ′′ ⊢ Δ′′), and let 𝜎
q
Γ2,Γ′,Γ′′ | Θ,Θ′,Θ′′ ⊢ Δ,Δ′,Δ′′y𝛾:𝐺

𝜎′.
Then for all variable 𝑥 in Γ2 or in Θ, 𝜎(𝑥) and 𝜎′(𝑥) should by typable in the empty context;
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in the second case, by definition, in the first case, because 𝑥 is of modal types and 𝜎(𝑥) and
𝜎′(𝑥) are values. Thus 𝜎(𝑡) and 𝜎′(𝑡) are closed terms of modal type, so by lemma 11 their
normal forms are values 𝑉 and 𝑉 ′ respectively.

We know that 𝜎(⟨𝑡 |+ 𝜇̃𝑎+.⟨𝜇𝛽−.𝑐 |− 𝑒⟩⟩) →* ⟨𝜇𝛽−.𝜎(𝑐)[𝑎 := 𝑉 ] |− 𝜎(𝑒)⟩ = 𝜎̄(⟨𝜇𝛽−.𝑐 |− 𝑒⟩)
and 𝜎′(⟨𝜇𝛽−.⟨𝑡 |+ 𝜇̃𝑎+.𝑐⟩ |− 𝑒⟩) →* ⟨𝜇𝛽−.𝜎′(𝑐)[𝑎 := 𝑉 ′] |− 𝜎′(𝑒)⟩ = 𝜎̄′(⟨𝜇𝛽−.𝑐 |− 𝑒⟩) where 𝜎̄
and 𝜎̄′ are the extension in 𝑎 of 𝜎 respectively 𝜎′ with 𝑉 , respectively 𝑉 ′. By saturation, we
only have to show them being in relation for //.

But≃ is reflexive, so we only have to prove that 𝜎̄
q
Γ2, 𝑎 : 𝐴2,Γ′,Γ′′ | Θ,Θ′,Θ′′ ⊢ Δ,Δ′,Δ′′y𝛾:𝐺

𝜎̄′,
that is, 𝑉 V (𝐴) 𝑉 ′. We know that 𝜎(𝑡) T (𝐴) 𝜎′(𝑡′); let 𝑆 S (𝐴) 𝑆′. We know that there
is 𝑊 such that ⟨𝜎(𝑡) |+ 𝑆⟩ →* ⟨𝑊 |+ 𝛾⟩ ←* ⟨𝜎′(𝑡′) |+ 𝑆′⟩, ⟨𝜎(𝑡) |+ 𝑆⟩ →* ⟨𝑉 |+ 𝑆⟩,
⟨𝜎′(𝑡′) |+ 𝑆′⟩ →* ⟨𝑉 ′ |+ 𝑆′⟩, ⟨𝑊 |+ 𝛾⟩ is a normal form and → is confluent; thus, ⟨𝑉 |+ 𝑆⟩ →*

⟨𝑊 |+ 𝛾⟩ ←* ⟨𝑉 ′ |+ 𝑆′⟩, so 𝑉 V (𝐴) 𝑉 ′.
Hence, the result.

8. Focusing

Before proving the last main theorem, we will need a last technical result. We will need a more
general version of strong normalization; namely, that each provable sequent admits a focused
proof. Focused proofs correspond to 𝛽-short, 𝜂-long terms. We will not detail the proof here,
because it is an easy adaptation from the one of [Mun17] for this system. The focused system
is provided in fig. 3.

Focusing is a proof search technique which has been developed by Andreoli [And92]. It
consists on alternating an inversion phase, in which all invertible rules are inverted (a rule is
invertible if its premises are derivable from its conclusion) in any order, and a focusing phase,
in which one apply the non-invertible rules. The intermediate phase mediate between these two
phases.

Lemma 14 (Focusing). For each command 𝑐 : (Γ | Θ ⊢ Δ), there exists a command 𝑐′ such
that 𝑐 =𝛽𝜂 𝑐

′ and 𝑐′ : (Γ | Θ ⊢𝑖𝑛𝑣 Δ). Moreover, inversion steps can be performed in any order.
If 𝑉 is a value and 𝑆 is a stack, then they admit similarly a focused derivation.

9. Conservativity

Intuitionistic propositional logic (or at least its fragment without false, but with negation) can
be embedded into this calculus by defining a translation J∙K on formulas such that J⊤K = 1,
J𝐴 ∧𝐵K = J𝐴K⊗ J𝐵K, J𝐴 ∨𝐵K = J𝐴⊕𝐵K, J𝐴→ 𝐵K = □(J𝐴K→ J𝐵K) and J¬𝐴K = □¬ J𝐴K. It
is easy to see that for all formula 𝐴, 𝜛(J𝐴K) = 2 and that this translation preserves provability.
This is why we can think of terms of modal types, typed in a modal context, as intuitionistic.
This claim is supported by the fact that, as Gödel already remarked [Göd01], this logic does not
prove 𝐴⊕□¬𝐴 nor □¬□¬𝐴→ 𝐴. We will show that this translation also reflects provability.

Theorem 2 (Conservativity). If
• JΓK | Θ ⊢ 𝑉 : J𝐴K ; ·;
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• JΓK | Θ ⊢ 𝑡 : J𝐴K | ·;
• JΓK | Θ;𝑆 : 𝐷 ⊢ 𝛾? : J𝐶K;
• 𝑐 : (JΓK | Θ ⊢ 𝛼? : 𝐴);

with Δ = 𝛾? : J𝐶K meaning that Δ = · or Δ = 𝛾 : J𝐶K, 𝐷 being either of the form J𝐴K, or ¬ J𝐴K,
or ¬ J𝐴KO J𝐵K, then 𝑉 , 𝑡, 𝑆 and 𝑐 are =𝛽𝜂 to a value, term, stack or command whose proof
contains no sequent with two formulas on the right, with the following extra derivation rule.2

𝑐 : (Γ, 𝑎 : 𝐴 | Θ ⊢ 𝛽 : 𝐵)
⟨𝜇(𝛼, 𝛽).⟨𝜇[𝑎].𝑐 |− 𝛼⟩ |− 𝛾⟩ : (Γ | Θ ⊢ 𝛾 : ¬𝐴O𝐵)

This is indeed a proof that the system L□
pol is conservative over intuitionistic logic, because

intuitionistic logic correspond to classical proofs where sequents are restricted to allow only one
formula on the right [Gir93].

This translation of intuitionistic logic and this theorem is a variant of the Gödel-McKinsey-
Tarski theorem: Gödel remarked that the embedding of intuitionistic logic into the classical S4
logic [Göd01] preserves and reflects provability, and this was later proved by McKinsey and
Tarski [MT48]. One can also see the call-by-value translation of intuitionistic logic into linear
logic by Girard [Gir87] as a variant of this theorem; indeed, it translates 𝐴→ 𝐵 as !(𝐴⊸ 𝐵),
and ! is a comonad.

For the proof, see section C: it is obtained by focusing.

10. Conclusion

For a summary of my contributions and a discussion on any future work, see the first part of
this work.
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A. Appendix: Proofs for the CPS transformation

A.1. Proof of lemma 1

This proof is inspired by the proof of [Con+19].
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First, we need a lemma saying that J∙K𝜆 is compatible with the substitution, that is, J𝑡K𝜆
⊥ [𝑥 :=

J𝑉 K𝜆
v ] = J𝑡[𝑥 := 𝑉 ]K𝜆

⊥, and so on. It is obvious.
For reductions like for functions types, we have, for example,

J(𝜆𝑥.𝑡) 𝑉 K𝜆
t (𝑀)

= (𝜆⊥𝑘.𝑘⊥ (J𝑉 K𝜆
v , 𝜆

⊥𝑦.𝑀⊥ 𝑦))⊥ (𝜆⊥(𝑥, 𝑘). J𝑡K𝜆
t (𝑘))

→* J𝑡K𝜆
t (𝜆⊥𝑦.𝑀⊥ 𝑦)[𝑥 := J𝑉 K𝜆

v ]
= J𝑡[𝑥 := 𝑉 ]K𝜆

t (𝜆⊥𝑦.𝑀⊥ 𝑦)
→* J𝑡[𝑥 := 𝑉 ]K𝜆

t (𝑀)

It also works the same for other reductions, except for 𝒞. For 𝒞, on the one hand, we have thatq
𝒞 (𝜆⊥𝑘.𝑘⊥ 𝑉 )

y𝜆

t (𝑀) = (𝜆⊥𝑣.𝑣⊥ 𝑀)⊥ (𝜆⊥𝑘.𝑘⊥ J𝑉 K𝜆
v )→* 𝑀⊥ J𝑉 K𝜆

v = J𝑉 K𝜆
t (𝑀).

On the second hand, let us define a translation J𝐹 [_]K𝜆
F on elementary contexts 𝐹 [_] that

verifies J𝐹 [𝑡]K𝜆
t (𝑀) = J𝑡K𝜆

t (J𝐹 [_]K𝜆
F (𝑀)), inspired by [Con+19].

• J[_] 𝑉 K𝜆
F (𝑀) = 𝜆⊥𝑘.𝑘⊥ (J𝑉 K𝜆

v , 𝜆
⊥𝑥.𝑀⊥ 𝑥)

• Jlet 𝑥 = [_] in 𝑡K𝜆
F (𝑀) = 𝜆⊥𝑥. J𝑡K𝜆

t (𝑀)
• Jlet * = [_] in 𝑡K𝜆

F (𝑀) = 𝜆⊥𝑧. let * = J𝑡K𝜆
t (𝑀) in⊥

• Jlet (𝑥, 𝑦) = [_] in 𝑡K𝜆
F (𝑀) = 𝜆⊥(𝑥, 𝑦). J𝑡K𝜆

t (𝑀)

•
Jmatch [_] with {𝜄1 𝑥.𝑡 | 𝜄2 𝑦.𝑢}K𝜆

F (𝑀) =
𝜆⊥𝑧.match 𝑧 with⊥ {𝜄1 𝑥. J𝑡K𝜆

t (𝑀) | 𝜄2 𝑦. J𝑢K𝜆
t (𝑀)}

• J𝒞 [_]K𝜆
F (𝑀) = 𝜆⊥𝑣.𝑣⊥ 𝑀

Then we have:
r
𝐹 [𝒞 (𝜆⊥𝑘.𝑡)]

z𝜆

t
(𝑀)

=
r
𝒞 (𝜆⊥𝑘.𝑡)

z𝜆

t
(J𝐹 [_]K𝜆

F (𝑀))

= (𝜆⊥𝑣.𝑣⊥ (J𝐹 [_]K𝜆
F (𝑀)))⊥ (𝜆⊥𝑘. J𝑡K𝜆

⊥)
→* J𝑡K𝜆

⊥ [𝑘 := J[_]K𝜆
F (𝑀)]

and on the other side
r
𝒞 (𝜆⊥𝑗.𝑡[𝑘 := 𝜆⊥𝑥. let 𝑦 = 𝐹 [𝑥] in⊥ 𝑗⊥ 𝑦])

z𝜆

t
(𝑀)

= (𝜆⊥𝑣.𝑣⊥ 𝑀)⊥ (𝜆⊥𝑗. J𝑡K𝜆
⊥ [𝑘 := 𝜆⊥𝑥. J𝐹 [𝑥]K𝜆

t (𝜆⊥𝑦.𝑗⊥ 𝑦)])
→* J𝑡K𝜆

⊥ [𝑘 := 𝜆⊥𝑥. J𝐹 [𝑥]K𝜆
t (𝜆⊥𝑦.𝑀⊥ 𝑦)]

= J𝑡K𝜆
⊥ [𝑘 := 𝜆⊥𝑥. J𝐹 [_]K𝜆

F (𝜆⊥𝑦.𝑀⊥ 𝑦)⊥ 𝑥]
→* J𝑡K𝜆

⊥ [𝑘 := J𝐹 [_]K𝜆
F (𝑀)]

Thus, both terms are in relation by ∼=.
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A.2. Proof of lemma 5

We prove this statement by induction on the derivation.
Three cases are not straightforward: the first one is the renaming rule. We must show that

𝜎 ∘ 𝜃 : (Γ | Θ ⊢ Δ) ⇒ (Γ′′ | Θ′′ ⊢ Δ′′). It is indeed the case: if 𝑥 : 𝐴 ∈ Γ, 𝜃(𝑥) : 𝐴 ∈ Γ′ then
Γ′′ | Θ′′ ⊢ 𝜎(𝜃(𝑥)) : 𝐴; Δ′′, and the same goes for 𝛼 : 𝐴 ∈ Δ. If 𝑥 : 𝐴 ∈ Θ, 𝜃(𝑥) : 𝐴 ∈ Θ′ thus
Γ′′2 | Θ′′ ⊢ 𝜎(𝜃(𝑥)) : 𝐴 ⊢ ·. Hence, 𝜎 ∘ 𝜃 is indeed a substitution of the good type.

The second case is the left rule for □. If 𝜎 : (Γ2 | Θ ⊢ ·) ⇒ (Γ′ | Θ′ ⊢ Δ′), we can restrict
𝜎 to be a substitution 𝜎2 : (Γ2 | Θ ⊢ ·) ⇒ (Γ′2 | Θ′ ⊢ ·): indeed, if 𝑥 : □𝐴 ∈ Γ2 then
Γ′ | Θ′ ⊢ 𝜎(𝑥) : □𝐴; Δ′ but by lemma 4, we have Γ′2 | Θ′ ⊢ 𝜎(𝑥) : □𝐴; ·, and if 𝑥 : 𝐴 ∈ Θ then
Γ′2 | Θ′ ⊢ 𝜎(𝑥) : 𝐴; · because 𝜎 is a substitution. Therefore, if Γ2 | Θ ⊢ 𝑉 : 𝐴; · we have by
induction that Γ′2 | Θ′ ⊢ 𝜎2(𝑉 ) : 𝐴; ·, hence Γ′2 | Θ′ ⊢ 2𝜎2(𝑉 ) : □𝐴; · and Γ′ | Θ′ ⊢ 2𝜎2(𝑉 ) :
□𝐴; Δ by weakening. But 𝜎(2𝑉 ) = 2𝜎2(𝑉 ), therefore Γ′ | Θ′ ⊢ 𝜎(2𝑉 ) : □𝐴; Δ′.

The last case is the one of rules with several premises. We will deal with the case of the left
rule for ⊗. Suppose 𝜎 : (Γ1,Γ2 | Θ1,Θ2 ⊢ (𝑉,𝑊 ) : 𝐴⊗ 𝐵; Δ1,Δ2) ⇒ (Γ′ | Θ′ ⊢ Δ′). We have
Γ′ | Θ′ ⊢ 𝜎(𝑉 ) : 𝐴; Δ′ and Γ′ | Θ′ ⊢ 𝜎(𝑉 ) : 𝐴; Δ′. We cannot apply the introduction rule for ⊗
yet, because the contexts are not disjoint. Therefore, we will first apply a renaming on both
side : the 𝜃𝑖 defined by 𝜃𝑖(𝑥) = 𝑥𝑖 and 𝜃𝑖(𝛼) = 𝛼𝑖 are renaming into the context (Γ′

𝑖 | Θ′
𝑖 ⊢ Δ′

𝑖),
with Γ′

𝑖 the context Γ′ where variables have been renamed by indexing them with 𝑖, and so on
for Θ′

𝑖 and Δ′
𝑖. We thus have Γ′

1,Γ′
2 | Θ′

1,Θ′
2 ⊢ (𝜃1 ∘ 𝜎(𝑉 ), 𝜃2 ∘ 𝜎(𝑊 )) : 𝐴⊗𝐵; Δ′

1,Δ′
2.

Lastly, we apply the renaming 𝜃 which goes to the context Γ′ | Θ′ ⊢ Δ′, defined by 𝜃(𝑥𝑖) = 𝑥
and 𝜃(𝛼𝑖) = 𝛼. We hence have Γ′ | · ⊢ 𝜃((𝜃1 ∘ 𝜎(𝑉 ), 𝜃2 ∘ 𝜎(𝑊 ))) : 𝐴⊗𝐵; Δ′. But 𝜃 ∘ 𝜃𝑖 is the
identity, so finally we get Γ′ | Θ′ ⊢ 𝜎((𝑉,𝑊 )) : 𝐴⊗𝐵; Δ′.

A.3. Proof of lemma 8

The proof will go on as in section A.1.
We first need an obvious substitution lemma, similar to the one in the aforementioned proof.
Then, for the main proof, we have, for example, for functions:

L(𝜆𝑎.𝑡) 𝑉 Mt(𝑆)
= ⟨{𝜇(𝛼, 𝛽).⟨𝜇[𝑎].L𝑡Mt(𝛽) |− 𝛼⟩} |+ 𝜇̃{𝑓}.⟨𝑓 |− ([L𝑉 Mv], 𝑆)⟩⟩

→* L𝑡Mt(𝑆)[𝑥 := L𝑉 Mv]
= L𝑡[𝑥 := 𝑉 ]Mt(𝑆)

The other 𝛽-reductions, except for 𝒞, are similar.
For 𝒞, first, notice that

L𝒞 (𝜆𝑘⊥.𝑘⊥ 𝑉 )Mt(𝑆)
= ⟨{𝜇[𝑘].⟨𝑘 |+ 𝜇̃{𝑓}.⟨𝑓 |− [L𝑉 Mv]⟩⟩} |+ 𝜇̃{𝑥}.⟨𝑥 |− [{𝜇[𝑦].⟨𝑦 |+ 𝑆⟩}]⟩⟩

→* ⟨L𝑉 Mv |
+ 𝑆⟩

= L𝑉 Mt(𝑆)

Then, we will again define L𝐹 [_]MF(𝑆) for an elementary context 𝐹 [_] and a stack 𝑆. We
want to ensure the property that for all 𝑡, L𝐹 [𝑡]Mt(𝑆) = L𝑡Mt(L𝐹 [_]MF(𝑆)):
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L[_] 𝑉 MF(𝑆) = 𝜇̃{𝑓}.⟨𝑓 |− ([L𝑉 Mv], 𝑆)⟩ Llet 𝑥 = [_] in 𝑡MF(𝑆) = 𝜇̃𝑥.L𝑡Mt(𝑆)

Llet (𝑥, 𝑦) = [_] in 𝑡MF(𝑆) = 𝜇̃(𝑥, 𝑦).L𝑡Mt(𝑆)

Lmatch [_] with {𝜄1 𝑥.𝑡 | 𝜄2 𝑦.𝑢}MF(𝑆) = 𝜇̃(𝜄1 𝑥.L𝑡Mt(𝑆) | 𝜄2 𝑦.L𝑢Mt(𝑆))

Llet 2𝑥 = [_] in 𝑡MF(𝑆) = 𝜇̃2𝑥.L𝑡Mt(𝑆) L𝒞 [_]MF(𝑆) = 𝜇̃{𝑥}.⟨𝑥 |− [{𝜇[𝑦].⟨𝑦 |+ 𝑆⟩}]⟩

Then we have

L𝐹 [𝒞 (𝜆⊥𝑘.𝑡)]MF(𝑆)
= L𝒞 (𝜆⊥𝑘.𝑡)Mt(L𝐹 [_]MF(𝑆))

= ⟨{𝜇[𝑘].L𝑡M⊥} |
+ 𝜇̃{𝑥}.⟨𝑥 |− [{𝜇[𝑦].⟨𝑦 |+ L𝐹 [_]MF(𝑆)⟩}]⟩⟩

→ L𝑡M⊥[𝑘 := {𝜇[𝑦].⟨𝑦 |+ L𝐹 [_]MF(𝑆)⟩}]

and

L𝒞 (𝜆⊥𝑗.𝑡[𝑘 := 𝜆⊥𝑥. let 𝑦 = 𝐹 [𝑥] in⊥ 𝑗⊥ 𝑦])Mt(𝑆)
= ⟨{𝜇[𝑗].L𝑡M⊥[𝑘 := {𝜇[𝑥].L𝐹 [𝑥]Mt(𝜇̃𝑦+.⟨𝑗 |+ 𝜇̃{𝑖}.⟨𝑖 |− [𝑦]⟩⟩)}]} |+ 𝜇̃{𝑥}.⟨𝑥 |− [{𝜇[𝑦].⟨𝑦 |+ 𝑆⟩}]⟩⟩
= ⟨{𝜇[𝑗].L𝑡M⊥[𝑘 := {𝜇[𝑥].⟨𝑥 |+ L𝐹 [_]MF(𝜇̃𝑦+.⟨𝑗 |+ 𝜇̃{𝑖}.⟨𝑖 |− [𝑦]⟩⟩)⟩}]} |+ 𝜇̃{𝑥}.⟨𝑥 |− [{𝜇[𝑦].⟨𝑦 |+ 𝑆⟩}]⟩⟩

→* L𝑡M⊥[𝑘 := {𝜇[𝑥].⟨𝑥 |+ L𝐹 [_]MF(𝜇̃𝑦+.⟨𝑦 |+ 𝑆⟩)⟩}]
→* L𝑡M⊥[𝑘 := {𝜇[𝑥].⟨𝑥 |+ L𝐹 [_]MF(𝑆)⟩}]

Thus, both are in relation by ∼=.

A.4. Proof of lemma 7

For types, it is straightforward.
We will not prove all the cases for redexes, but only the translation of 𝒞 𝑡 and functions.

JL𝒞 𝑡Mt(𝑆)KL
c

=
q
L𝑡Mt(𝜇̃{𝑥}.⟨𝑥 |− [{𝜇[𝑦].⟨𝑦 |+ 𝑆⟩}]⟩)

yL
c

→* J𝑡K𝜆
t (

q
𝜇̃{𝑥}.⟨𝑥 |− [{𝜇[𝑦].⟨𝑦 |+ 𝑆⟩}]⟩

yL
s )

= J𝑡K𝜆
t (𝜆⊥𝑥.𝑥⊥ (𝜆⊥𝑦.(J𝑆KL

s )⊥ 𝑦))
→ J𝑡K𝜆

t (𝜆⊥𝑥.𝑥⊥ (J𝑆KL
s )⊥)

= J𝒞 𝑡K𝜆
t (J𝑆KL

s )
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JL𝜆𝑎.𝑡MvK
L
v

=
q
{𝜇(𝛼, 𝛽).⟨𝜇[𝑎].L𝑡Mt(𝛽) |− 𝛼⟩}

yL
v

= 𝜆⊥(𝛼, 𝛽).(𝜆⊥𝑎. JL𝑡Mt(𝛽)KL
c )⊥ 𝛼

→* 𝜆⊥(𝛼, 𝛽). J𝑡K𝜆
t (J𝛽KL

s )[𝑎 := 𝛼]
= 𝜆⊥(𝑎, 𝛽). J𝑡K𝜆

t (𝛽)
= J𝜆𝑎.𝑡K𝜆

v

JL𝑡 𝑉 Mt(𝑆)KL
c

=
q
L𝑡Mt(𝜇̃{𝑓}.⟨𝑓 |

− (L𝑉 Mv, 𝑆)⟩)
yL

c

→* J𝑡K𝜆
t (𝜆⊥𝑓.𝑓⊥ (JL𝑉 MvK

L
v , J𝑆KL

s ))
→* J𝑡K𝜆

t (𝜆⊥𝑓.𝑓⊥ (J𝑉 K𝜆
v , J𝑆KL

s ))
= J𝑡 𝑉 K𝜆

t (J𝑆KL
s )

B. Appendix: Proofs for the observational equivalence

B.1. Typing compatibility proof (definition 5)

Proof. We will show some key cases.
2𝑥: We want to show that · | 𝑥 : 𝐴 ⊢ 𝑥 ≃ 𝑥 : 𝐴. Given 𝜎 J· | 𝑥 : 𝐴 ⊢ ·K𝜎′, we have 𝜎(𝑥) V (𝐴)

𝜎′(𝑥) by definition.
2𝑉 : Suppose that Γ2 | Θ ⊢ 𝑉 ≃ 𝑉 ′ : 𝐴; ·. Then for all 𝜎

q
Γ2 | Θ ⊢ ·

y
𝜎′, by definition we have

𝜎(𝑉 ) V (𝐴) 𝜎′(𝑉 ′) thus by definition of ‖□𝐴‖ we have 𝜎(2𝑉 ) = 2𝜎(𝑉 ) ‖□𝐴‖2𝜎′(𝑉 ′) =
𝜎′(2𝑉 ′), and ‖□𝐴‖ ⊆ V (□𝐴). Thus, Γ2 | Θ ⊢ 2𝑉 ≃ 2𝑉 ′ : □𝐴; ·.

𝜇̃2𝑥.𝑐: Suppose that 𝑐 ≃ 𝑐′ : (Γ | Θ, 𝑥 : 𝐴 ⊢ Δ). We want to show that Γ | Θ; 𝜇̃2𝑥.𝑐 ≃ 𝜇̃2𝑥.𝑐′ :
□𝐴 ⊢ Δ. Let 𝜎 JΓ | Θ ⊢ ΔK𝜎′. S (□𝐴) = ‖□𝐴‖⊥

+
, so we must show is that if 𝑉 ‖□𝐴‖ 𝑉 ′

then ⟨𝑉 | 𝜎(𝜇̃2𝑥.𝑐)⟩ //⟨𝑉 ′ | 𝜎′(𝜇̃2𝑥.𝑐′)⟩.
We know that 𝑉 and 𝑉 ′ can be written as 2𝑊 and 2𝑊 ′ with 𝑊 V (𝐴)𝑊 ′. Thus, we can
extend 𝜎 and 𝜎′ by defining 𝜎̄(𝑥) = 𝑊 and 𝜎̄′(𝑥) = 𝑊 ′, and we have 𝜎̄ JΓ | Θ, 𝑥 : 𝐴 ⊢ ΔK 𝜎̄′.
Thus, 𝜎̄(𝑐) // 𝜎̄′(𝑐′) by the induction hypothesis. That means that 𝜎(𝑐)[𝑥 := 𝑊 ] //𝜎′(𝑐′)[𝑥 :=
𝑊 ]. But ⟨𝑉 | 𝜎(𝜇̃2𝑥.𝑐)⟩ → 𝜎(𝑐)[𝑥 := 𝑊 ] and ⟨𝑉 ′ | 𝜎′(𝜇̃2𝑥.𝑐′)⟩ → 𝜎′(𝑐′)[𝑥 := 𝑊 ′], so by
saturation, we finally get that ⟨𝑉 | 𝜎(𝜇̃2𝑥.𝑐)⟩ //⟨𝑉 ′ | 𝜎′(𝜇̃2𝑥.𝑐′)⟩.

𝑆: If Γ | Θ;𝑆 ≃ 𝑆′ : 𝐴− ⊢ Δ, we want to show that Γ | Θ | 𝑆 ≃ 𝑆′ : 𝐴− ⊢ Δ as environments.
𝐴 is negative, so S (𝐴) is the restriction of E (𝐴) to stacks, so it is true.

𝜇𝛼𝜀.𝑐: if 𝑐 ≃ 𝑐′ : (Γ | Θ ⊢ Δ, 𝛼 : 𝐴𝜀), we want to show that Γ | Θ ⊢ 𝜇𝛼+.𝑐 ≃ 𝜇𝛼+.𝑐′ : 𝐴+ | Δ if 𝐴
is positive and Γ | Θ ⊢ 𝜇𝛼−.𝑐 ≃ 𝜇𝛼−.𝑐′ : 𝐴−; Δ if 𝐴 is negative. Let 𝜎 JΓ | Θ ⊢ ΔK𝛾:𝐺 𝜎′.
Whether 𝐴 is positive or negative, we want to show that 𝜎(𝜇𝛼𝜀.𝑐)S (𝐴)⊥𝜀

𝜎′(𝜇𝛼𝜀.𝑐′). Thus,
let 𝑆 and 𝑆′ such that 𝑆S (𝐴)𝑆′. We want to show that ⟨𝜇𝛼𝜀.𝜎(𝑐) |𝜀 𝑆⟩ //⟨𝜇𝛼𝜀.𝜎′(𝑐′) |𝜀 𝑆′⟩.
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We can extend 𝜎, respectively 𝜎′ in 𝛼 by 𝑆 or 𝑆′, and the resulting substitutions
verify 𝜎̄ JΓ | Θ ⊢ Δ, 𝛼 : 𝐴K 𝜎̄′. We know that by saturation, it is enough to show that
𝜎(𝑐)[𝛼 := 𝑆] //𝜎′(𝑐′)[𝛼 := 𝑆′], but this means 𝜎̄(𝑐) // 𝜎̄′(𝑐′). It is true because 𝑐 ≃ 𝑐′.

⟨𝑡 |+ 𝑆⟩: If Γ | Θ ⊢ 𝑡 ≃: 𝐴 | Δ and Γ | Θ;𝑆 ≃ 𝑆′ ⊢ Δ where 𝐴 is positive, then for all 𝜎 JΓ | Θ ⊢ ΔK𝜎′,
𝜎(𝑡) T (𝐴) 𝜎′(𝑡′) and 𝜎(𝑆) S (𝐴) 𝜎′(𝑆′), but T (𝐴) = S (𝐴)⊥+

so by definition of ⊥+,
⟨𝑡 |+ 𝑆⟩ //⟨𝑡′ |+ 𝑆′⟩.

𝜃(𝑐): Suppose that 𝑐 ≃ 𝑐′ : (Γ | Θ ⊢ Δ) and 𝜃 ∈ R(Γ | Θ ⊢ Δ ⇒ Γ′ | Θ′ ⊢ Δ′). We want to
show that 𝜃(𝑐) ≃ 𝜃(𝑐′) : (Γ′ | Θ′ ⊢ Δ′). Let 𝜎 JΓ′ | Θ′ ⊢ ΔK𝜎′. Then 𝜎 ∘ 𝜃 JΓ | Θ ⊢ ΔK𝜎′ ∘ 𝜃.
Thus, we can apply them on 𝑐 ≃ 𝑐′ to get that 𝜎(𝜃(𝑐)) //𝜎′(𝜃(𝑐′)).

B.2. Substitution compatibility proof (definition 6)

Proof. Suppose 𝑐 ≃ 𝑐′ : (Γ | Θ ⊢ Δ) and 𝜎 ≃ 𝜎′ : (Γ′ | Θ ⊢ Δ) ⇒ (Γ′ | Θ′ ⊢ Δ′). Let’s
show that 𝜎(𝑐) ≃ 𝜎′(𝑐′) : (Γ′ | Θ′ ⊢ Δ′), that is, for all 𝜓 JΓ′ | Θ′ ⊢ Δ′K𝜓′, 𝜓 ∘ 𝜎(𝑐) //𝜓′ ∘ 𝜎′(𝑐′).
We want to apply the definition of 𝑐 ≃ 𝑐′ with 𝜓 ∘ 𝜎 and 𝜓′ ∘ 𝜎′, so we have to prove that
𝜓 ∘ 𝜎 JΓ | Θ ⊢ ΔK𝜓′ ∘ 𝜎′.
𝜓 ∘ 𝜎 and 𝜓′ ∘ 𝜎′ are substitutions with the good type ; now let 𝛼 : 𝐴 ∈ Δ. Then by

definition of 𝜎 ≃ 𝜎′, Γ′ | Θ′;𝜎(𝛼) ≃ 𝜎′(𝛼) ⊢ Δ′. Thus, by definition of 𝜓 JΓ′ | Θ′ ⊢ Δ′K𝜓′,
𝜓 ∘ 𝜎(𝛼) S (𝐴)𝜓′ ∘ 𝜎′(𝛼). The proof works for 𝑥 : 𝐴 ∈ Γ or 𝑥 : 𝐴 ∈ Θ (but we have to restrict 𝜓
here), so indeed 𝜓 ∘ 𝜎 JΓ | Θ ⊢ ΔK𝜓′ ∘ 𝜎′.

B.3. Adequacy proof (definition 7)

Proof. We will show the proof for the case of commands ; the other cases are proved similarly.
Suppose that 𝑐 ≃ 𝑐′ : (· | · ⊢ 𝛾 : 𝐺).

Let 𝜎(𝛾) = 𝜎′(𝛾) = 𝛾. Then 𝜎 J· | · ⊢ 𝛾 : 𝐺K𝛾:𝐺 𝜎′. Indeed, let’s show that 𝛾 S (𝐺) 𝛾, that is,
because 𝐺 is positive, for every 𝑉 ‖𝐺‖ 𝑉 ′ we have ⟨𝑉 |+ 𝛾⟩ //⟨𝑉 ′ |+ 𝛾⟩.

We will prove by induction on 𝐺 the following three properties:
H1 If 𝑉 ‖𝐺‖𝛾:𝐺 𝑉 ′ then 𝑉 = 𝑉 ′.
H2 𝛾 S (𝐺)𝛾:𝐺 𝛾.
H3 If 𝑉 V (𝐺)𝛾:𝐺 𝑉 ′ then 𝑉 = 𝑉 ′.

First, we will show that if H1 is true for 𝐺, then H2 and H3 too. Indeed, suppose 𝑉 ‖𝐺‖ 𝑉 ′.
Then 𝑉 = 𝑉 ′, but from the definition of // it is clear that ⟨𝑉 |+ 𝛾⟩ //⟨𝑉 |+ 𝛾⟩. Thus, H2 holds.
Now if 𝑉 V (𝐺) 𝑉 ′, because 𝛾 S (𝐺) 𝛾 we also have ⟨𝑉 |+ 𝛾⟩ //⟨𝑉 ′ |+ 𝛾⟩. But because 𝐺 is
ground, there can be no redex inside 𝑉 or 𝑉 ′. Thus, by definition of //, 𝑉 = 𝑉 ′.

Now, let’s proceed to the induction. It is clear that if 𝑉 V (1) 𝑉 ′ then 𝑉 = 𝑉 ′ = *. Suppose
that H3 holds for 𝐺1 and 𝐺2: if 𝐺 = 𝐺1⊗𝐺2 and 𝑉 ‖𝐺‖𝑉 ′, then 𝑉 = (𝑈,𝑊 ) and 𝑉 ′ = (𝑈 ′,𝑊 ′)
with 𝑈 V (𝐺1) 𝑈 ′ and 𝑊 V (𝐺2) 𝑊 ′. Hence, by H3, 𝑉 = 𝑉 ′. The same works for □𝐺1 or
𝐺1 ⊕𝐺2.
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B.4. Proof that ≃ is an equivalence relation (lemma 13)

Proof. // is clearly symmetric, and it is transitive because the 𝑉 in the definition of // is unique.
It is also reflexive; in order to prove this, we use the characterization of closed normal forms of
modal type lemma 11.

First, ‖𝐴‖, V (𝐴), S (𝐴), T (𝐴) and E (𝐴) are reflexive. Indeed, it is the case for all these
relations except ‖𝐴‖ by adequacy. Now, for ‖𝐴‖, we can prove it easily by induction. If
𝐴 = 𝐵 ⊗ 𝐶 and 𝑉 : 𝐴 in this context, then 𝑉 is a pair (𝑈,𝑊 ) because there is no variable in
this context, we know that 𝑈 V (𝐵)𝑈 ′ and 𝑊 V (𝐶)𝑊 ′ so 𝑉 ‖𝐴‖ 𝑉 ′. If 𝐴 = ¬𝐵 and 𝑆 : 𝐴, the
only covariables in this context is 𝛾 : 𝐺 and 𝐺 is positive, so 𝑆 ̸= 𝛾. Thus, 𝑆 = [𝑉 ] for some
𝑉 : 𝐵. We know that 𝑉 V (𝐵) 𝑉 , thus 𝑆 ‖𝐴‖ 𝑆.

It is clear that all these relations are symmetric.
Let’s show that it is transitive. We will proceed by induction on 𝐴. First, if ‖𝐴‖ is transitive,

so are V (𝐴), T (𝐴), S (𝐴) and E (𝐴). Indeed, let us handle the case where 𝐴 is positive. In this
case, if S (𝐴) = E (𝐴) and if T (𝐴) is positive, then it is also the case of V (𝐴). Now, suppose
that 𝑆1 S (𝐴) 𝑆2 S (𝐴) 𝑆3, and let 𝑉 ‖𝐴‖ 𝑉 ′. We want to show that ⟨𝑉 |+ 𝑆1⟩ //⟨𝑉 ′ |+ 𝑆2⟩. But
‖𝐴‖ is reflexive, thus 𝑉 V (𝐴) 𝑉 , so we have ⟨𝑉 |+ 𝑆1⟩ //⟨𝑉 |+ 𝑆2⟩ and ⟨𝑉 |+ 𝑆2⟩ //⟨𝑉 ′ |+ 𝑆2⟩.
// is transitive, so indeed, 𝑆1 S (𝐴) 𝑆3. The same proof works in order to show that T (𝐴) is
transitive.

Now, for the induction, let us treat, for example, the case of O. If S (𝐴) and S (𝐵) are transitive,
then ‖𝐴O𝐵‖ is transitive: indeed, if (𝑆, 𝑇 )‖𝐴O𝐵‖(𝑆′, 𝑇 ′)‖𝐴O𝐵‖(𝑆′′, 𝑇 ′′) then 𝑆S (𝐴)𝑆′S (𝐴)𝑆′′

and 𝑇 S (𝐵) 𝑇 ′ S (𝐵) 𝑇 ′′, thus 𝑆 S (𝐴) 𝑆′′ and 𝑇 S (𝐵) 𝑇 ′′, hence (𝑆, 𝑇 ) ‖𝐴O𝐵‖ (𝑆′′, 𝑇 ′′).

B.5. Proof of compatibility with =𝛽𝜂 (definition 8)

Proof. It is enough to show that if 𝑡→𝛽𝜂 𝑢 then 𝑡 ≃ 𝑢, and similarly for commands, etc.
We will restrict ourselves to reduction of redexes in the proof, so let’s convince ourselves that

it is possible by dealing with one case. We proceed by induction on the proof of reduction.
Suppose that 𝑉 → 𝑉 ′ and that Γ | Θ(𝑉,𝑊 ) : 𝐴 ⊗ 𝐵; Δ. By the inversion lemma (lemma 6),
we have proofs Γ1 | Θ1 ⊢ 𝑉 : 𝐴; Δ1 and Γ2 | Θ2 ⊢ 𝑊 : 𝐵; Δ2 and a renaming 𝜃 ∈ R(Γ1,Γ2 |
Θ1,Θ2 ⊢ Δ1,Δ2 ⇒ Γ | Θ ⊢ Δ). Also, by subject reduction, we have Γ1 | Θ1 ⊢ 𝑉 ′ : 𝐴; Δ1.
Thus, by induction Γ1 | Θ1 ⊢ 𝑉 ≃ 𝑉 ′ : 𝐴; Δ1. Moreover, ≃ is reflexive so 𝑊 ≃ 𝑊 , and by
compatibility with typing we get Γ | Θ ⊢ (𝑉,𝑊 ) ≃ (𝑉 ′,𝑊 ) : 𝐴⊗𝐵; Δ.

There exists two kinds of redexes : 𝛽-redexes and 𝜂-redexes. We will give an example for
each of them. For 𝛽-redexes, consider for example ⟨𝜇𝛼−.𝑐 |− 𝑆⟩ : (Γ | Θ ⊢ Δ).

We want to show that ⟨𝜇𝛼−.𝑐 |− 𝑆⟩ ≃ 𝑐[𝛼 := 𝑆] : (Γ | Θ ⊢ Δ). Let 𝜎 JΓ | Θ ⊢ ΔK𝜎′. We thus
want to show that 𝜎(⟨𝜇𝛼−.𝑐 |− 𝑆⟩) //𝜎(𝑐[𝛼 := 𝑆]). But 𝜎(⟨𝜇𝛼−.𝑐 |− 𝑆⟩)→ 𝜎(𝑐[𝛼 := 𝑆]) and //
is reflexive, thus indeed 𝜎(⟨𝜇𝛼−.𝑐 |− 𝑆⟩) //𝜎(𝑐[𝛼 := 𝑆]).

On the other hand, for 𝜂-redexes, we have to deal with the relations V (𝐴), T (𝐴), etc. One can
see that 𝜂-redexes are defined pattern-matching constructs (that is, one that start with 𝜇̃ or 𝜇)
and such that the relations considered are always defined by orthogonality. This means that all
cases are dealt with as, for example, the case of O. Consider Γ | Θ ⊢ 𝜇(𝛼, 𝛽).⟨𝑉 |− (𝛼, 𝛽)⟩ ≃ 𝑉 :
𝐴O𝐵; Δ. Let 𝜎 JΓ | Θ ⊢ ΔK𝜎′. We want to show that 𝜎(𝜇(𝛼, 𝛽).⟨𝑉 |− (𝛼, 𝛽)⟩)S (𝐴O𝐵)⊥−

𝜎′(𝑉 ).
Let 𝑆 ‖𝐴O𝐵‖𝑆′ ; then we can write 𝑆 = (𝑇,𝑈) and 𝑆′ = (𝑇 ′, 𝑈 ′) with 𝑇 S (𝐴)𝑇 ′ and 𝑈 S (𝐵)𝑈 ′.
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We want to show that ⟨𝜎(𝜇(𝛼, 𝛽).⟨𝑉 |− (𝛼, 𝛽)⟩) |− (𝑇,𝑈)⟩ //⟨𝜎′(𝑉 ) |− (𝑇 ′, 𝑈 ′)⟩. The left side
reduces to ⟨𝜎(𝑉 ) |− (𝑇,𝑈)⟩, so by saturation, we have to prove that ⟨𝜎(𝑉 ) |− (𝑇,𝑈)⟩ //⟨𝜎′(𝑉 ) |−
(𝑇 ′, 𝑈 ′)⟩. But 𝑉 ≃ 𝑉 so 𝜎(𝑉 ) V (𝐴O𝐵) 𝜎′(𝑉 ); and of course (𝑇,𝑈) S (𝐴O𝐵) (𝑇 ′, 𝑈 ′), thus
indeed ⟨𝜎(𝑉 ) |− (𝑇,𝑈)⟩ //⟨𝜎′(𝑉 ) |− (𝑇 ′, 𝑈 ′)⟩. This concludes the proof.

C. Appendix: Conservativity

Proof of theorem 2. First, one can suppose that all values, commands and stacks appearing as
subterms are focused, by lemma 14.

Then, we can proceed by induction on the focused proof.
If 𝑉 is a variable, then it is obvious. Suppose now that 𝑉 is not a variable.
If 𝑉 : □(¬ J𝐴KO J𝐵K) is of the form 𝑉 = 2𝑉 ′, and 𝑉 is not a variable, then by focusing,

𝑉 ′ = 𝜇𝛾−.𝑐 for some 𝑐. Because of the □, 𝑉 ′ is typed in an environment without covariables,
so 𝑐 is typed with an environment with only one covariable, 𝛾 : ¬ J𝐴KO J𝐵K. We can apply the
inversions in any order, so we may as well suppose that the O and the ¬ has been inverted first
and that 𝑐 = ⟨𝜇(𝛼, 𝛽).⟨𝜇[𝑎].𝑐′ |− 𝛼⟩ |− 𝛾⟩ with 𝑐′ : (Γ, 𝑎 : J𝐴K | Θ ⊢ 𝛽 : J𝐵K). Then we can apply
the induction hypothesis on 𝑐′. 𝑐 can be obtained from 𝑐′ by appling the left rule of →.

The same goes for 2𝑉 ′ : □¬ J𝐴K.
If 𝑉 : J𝐴K⊗ J𝐵K is a pair (𝑈,𝑊 ), then by the inversion lemma (lemma 6), 𝑈 and 𝑊 can be

typed in the same context, so it works. If 𝑉 : J𝐴K⊕ J𝐵K it is obvious.
If 𝑡 : J𝐴K is a value we proceed by an obvious induction ; if 𝑡 = 𝜇𝛼+.𝑐 then 𝑐 is typed in a

context with only 𝛼 : J𝐴K on the right of the ⊢, so it also works.
It is straightforward for stacks of modal types or for stacks of the form [𝑉 ] : ¬ J𝐴K.
Now, let us look at JΓK | Θ; (𝑆, 𝑇 ) : ¬ J𝐴KO J𝐵K ⊢ 𝛾 : J𝐶K?. 𝑆 cannot be a covariable, because

the only one that may be in the environment is 𝛾 : J𝐶K, and J𝐶K ̸= ¬ J𝐴K. Thus, 𝑆 = [𝑉 ] for
some 𝑉 . But 𝑉 is of modal type, so it can always be typed without 𝛾, if it is present. Thus, we
do not contract 𝛾 in the derivation of (𝑆, 𝑇 ), and there is always at most one covariables.

Now, for commands: it is clear that the inversion phase do not increase the number of
covariables, except for the O rule. But then, because the order of the inversions does not matter,
we can suppose that every inversion of ¬ J𝐴KO J𝐵K is followed by an inversion of the ¬, and
this corresponds to applying the extra rule for →, so we are safe.

For the intermediate phase, the only rule which may increases the number of or duplicates
covariable is the cut rule for ⟨𝑉 |+ 𝛼⟩, on a positive type; for the other rules, simply apply the
induction hypothesis. For this rule, we cab show by the subformula property that all positive
types involved are modal: thus 𝑉 can be typed without refering to 𝛼. Then, we only have to
apply the induction hypothesis.
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𝑐 : (Γ, 𝑥 : 𝐴, 𝑦 : 𝐵,Γ′ | Θ ⊢𝑖𝑛𝑣 Δ)

⟨𝑧 |+ 𝜇̃(𝑥, 𝑦).𝑐⟩ : (Γ, 𝑧 : 𝐴⊗𝐵,Γ′ | Θ ⊢𝑖𝑛𝑣 Δ)

𝑐 : (Γ, 𝑥 : 𝐴2,Γ′ | Θ ⊢𝑖𝑛𝑣 Δ) 𝑐′ : (Γ, 𝑦 : 𝐵2,Γ′ | Θ ⊢𝑖𝑛𝑣 Δ)

⟨𝑧 |+ 𝜇̃(𝜄1 𝑥.𝑐 | 𝜄2 𝑦.𝑐′)⟩ : (Γ, 𝑧 : 𝐴2 ⊕𝐵2,Γ′ | Θ ⊢𝑖𝑛𝑣 Δ)

𝑐 : (Γ | Θ, 𝑥 : 𝐴2, 𝑦 : 𝐵2,Θ′ ⊢𝑖𝑛𝑣 Δ)

⟨𝑧 |+ 𝜇̃(𝑎, 𝑏).⟨𝑎 |+ 𝜇2𝑥.⟨𝑏 |+ 𝜇2𝑦.𝑐⟩⟩⟩ : (Γ | Θ, 𝑧 : 𝐴2 ⊗𝐵2,Θ′ ⊢𝑖𝑛𝑣 Δ)
𝑐 : (Γ | Θ, 𝑥 : 𝐴,Θ′ ⊢𝑖𝑛𝑣 Δ) 𝑐′ : (Γ | Θ, 𝑦 : 𝐵,Θ′ ⊢𝑖𝑛𝑣 Δ)

⟨𝑧 |+ 𝜇̃(𝜄1 𝑥.⟨𝑥 |+ 𝜇2𝑎.𝑐⟩ | 𝜄2 𝑦.⟨𝑦 |+ 𝜇2𝑏.𝑐⟩)⟩ : (Γ | Θ, 𝑧 : 𝐴⊕𝐵,Θ′ ⊢𝑖𝑛𝑣 Δ)
𝑐 : (Γ, 𝑥 : 1,Γ′ | Θ ⊢𝑖𝑛𝑣 Δ)

⟨* |+ 𝜇𝑥+.𝑐⟩ : (Γ,Γ′ | Θ ⊢𝑖𝑛𝑣 Δ)

𝑐 : (Γ | Θ, 𝑥 : 1,Θ′ ⊢𝑖𝑛𝑣 Δ)

⟨* |+ 𝜇𝑥+.𝑐⟩ : (Γ | Θ,Θ′ ⊢𝑖𝑛𝑣 Δ)
𝑐 : (Γ | Θ, 𝑥 : 𝐴,Θ′)

⟨𝑧 |+ 𝜇̃2𝑥+.𝑐⟩ : (Γ, 𝑧 : □𝐴 | Θ,Θ′)

𝑐 : (Γ, 𝑥 : □𝐴,Γ′ | Θ ⊢𝑖𝑛𝑣 Δ)

⟨2𝑧 |+ 𝜇̃𝑥+.𝑐⟩ : (Γ,Γ′ | Θ, 𝑧 : 𝐴)
𝑐 : (Γ | Θ ⊢𝑖𝑛𝑣 Δ, 𝛼 : 𝐴, 𝛽 : 𝐵,Δ′)

⟨𝜇(𝛼, 𝛽).𝑐 |− 𝛾⟩ : (Γ | Θ ⊢𝑖𝑛𝑣 Δ, 𝛾 : 𝐴O𝐵,Δ′)

𝑐 : (Γ, 𝑥 : 𝐴,Γ′ | Θ ⊢𝑖𝑛𝑣 Δ)

⟨𝜇[𝑥].𝑐 |− 𝛾⟩ : (Γ | Θ ⊢𝑖𝑛𝑣 Δ, 𝛾 : ¬𝐴)
(Γ | Θ ⊢ Δ) is inverted 𝑐 : (Γ | Θ ⊢𝑖𝑛𝑡 Δ)

𝑐 : (Γ | Θ ⊢𝑖𝑛𝑣 Δ)

(a) Inversion phase
A sequent (Γ | Θ ⊢ Δ) is inverted if every formula in Γ is negative, every formula in Δ is

positive and every formula in Θ is non-modal.
In the premises of these rules, we will always suppose that the sequent is inverted.

Γ, 𝑥 : 𝐴−,Γ′ | Θ;𝑆 : 𝐴− ⊢𝑓𝑜𝑐 Δ

⟨𝑥 |− 𝑆⟩ : (Γ, 𝑥 : 𝐴−,Γ′ | Θ ⊢𝑖𝑛𝑡 Δ)

Γ | Θ ⊢𝑓𝑜𝑐 𝑉 : 𝐴+; Δ, 𝛼 : 𝐴+,Δ′

⟨𝑉 |+ 𝛼⟩ : (Γ | Θ ⊢𝑖𝑛𝑡 Δ, 𝛼 : 𝐴+,Δ′)

Γ | Θ, 𝑥 : 𝐴−,Θ′;𝑆 : 𝐴− ⊢𝑓𝑜𝑐 Δ

⟨𝑥 |− 𝑆⟩ : (Γ | Θ, 𝑥 : 𝐴−,Θ′ ⊢𝑖𝑛𝑡 Δ)

𝑐 : (Γ, 𝑥 : 𝐴�□, 𝑦 : 𝐵�□ | Θ, 𝑧 : 𝐴�□ ⊗𝐵�□,Θ′ ⊢𝑖𝑛𝑣 Δ)

⟨𝑧 |+ 𝜇̃(𝑥, 𝑦).𝑐⟩ : (Γ | Θ, 𝑧 : 𝐴�□ ⊗𝐵�□,Θ′ ⊢𝑖𝑛𝑡 Δ)

𝑐 : (Γ, 𝑥 : 𝐴�□ | Θ, 𝑧 : 𝐴�□ ⊕𝐵�□,Θ′ ⊢𝑖𝑛𝑣 Δ) 𝑐′ : (Γ, 𝑦 : 𝐵�□ | Θ, 𝑧 : 𝐴�□ ⊕𝐵�□,Θ′ ⊢𝑖𝑛𝑣 Δ)

⟨𝑧 |+ 𝜇̃(𝜄1 𝑥.𝑐 | 𝜄2 𝑦.𝑐′)⟩ : (Γ | Θ, 𝑧 : 𝐴�□ ⊕𝐵�□,Θ′ ⊢𝑖𝑛𝑡 Δ)

(b) Intermediate phase
Here again, (Γ | Θ ⊢ Δ) is inverted.

Γ | Θ, 𝑥 : 𝐴�□,Θ′ ⊢𝑓𝑜𝑐 𝑥 : 𝐴; Δ
Γ2 | Θ ⊢𝑓𝑜𝑐 𝑉 : 𝐴; ·

Γ | Θ ⊢𝑓𝑜𝑐 2𝑉 : □𝐴; Δ

Γ | Θ ⊢𝑓𝑜𝑐 𝑉 : 𝐴; Δ Γ | Θ ⊢𝑓𝑜𝑐 𝑊 : 𝐵; Δ

Γ | Θ ⊢𝑓𝑜𝑐 (𝑉,𝑊 ) : 𝐴⊗𝐵; Δ

Γ | Θ;𝑆 : 𝐴 ⊢𝑓𝑜𝑐 Δ Γ | Θ;𝑇 : 𝐵 ⊢𝑓𝑜𝑐 Δ

Γ | Θ; (𝑆, 𝑇 ) : 𝐴O𝐵 ⊢𝑓𝑜𝑐 Δ

Γ | Θ ⊢𝑓𝑜𝑐 𝑉 : 𝐴𝑖; Δ

Γ | Θ ⊢𝑓𝑜𝑐 𝜄𝑖 𝑉 : 𝐴1 ⊕𝐴2; Δ

Γ | Θ ⊢𝑓𝑜𝑐 𝑉 : 𝐴; Δ

Γ | Θ; [𝑉 ] : ¬𝐴 ⊢𝑓𝑜𝑐 Δ Γ | Θ ⊢𝑓𝑜𝑐 * : 1; Δ

𝑐 : (Γ | Θ ⊢𝑖𝑛𝑣 Δ, 𝛼 : 𝐴−)

Γ | Θ ⊢𝑓𝑜𝑐 𝜇𝛼
−.𝑐 : 𝐴−; Δ

𝑐 : (Γ, 𝑥 : 𝐴+ | Θ ⊢𝑖𝑛𝑣 Δ)

Γ | Θ; 𝜇̃𝑥+.𝑐 : 𝐴+ ⊢𝑓𝑜𝑐 Δ

(c) Focusing rules

Figure 3: Appendix: The focused proof system



D. Appendix: The 𝜆1/2𝒞-calculus

We will here present the 𝜆1/2-calculus of [Con+19] (renamed here 𝜆1/2𝒞 for consistency), and
show how the 𝜆□𝒞-calculus is roughly the same calculus, but where we highlight the fact that
“being of level 1” means that we restrict the closure of the variable. We change a bit the calculus:
for example, we do not use a boolean type, but we add the ⊕ connective, we correct some errors
in the rules (for example, the rule of introduction of the pair was faulty, as Γ ⊢ (𝑉,𝑊 ) :2 𝐴1⊗𝐵1

was not possible, but it was claimed that if Γ ⊢ 𝑡 :1 𝐴 then Γ ⊢ 𝑡 :2 𝐴, etc.), and we remove the
restriction that function types cannot return types of level 2. Furthermore, we remove level
annotations on pairs and variables, and only allows pairs of values and function applications on
values. We refer the reader to the article of Cong et al. for further details.

In their article, they present a 𝜆-calculus where types and variables are annotated by a level,
which is 1 or 2. Moreover, the typing rules are so that a term of level 1 is also a term of level 2,
and a value of level 1 does not has free variables of level 2. Finally, this calculus is classical:
there is 𝒞 operator which implements double negation elimination for the level 2 negation. Their
calculus is to serve as an intermediate language for compilation; when compiling “intuitionistic”
languages (i.e. without control operators, where everything s at level 1), it is more efficient to
compile them using control operators and CPS translations that can be compiled as jumps,
even though these are “classical” features. Moreover, their CPS translation is not strictly
intuitionistic, in the sense that continuations may be discarded or duplicated, but they keep
nice properties from the point of view of compilation: second-class closures as continuations can
be allocated on the stack, allowing an efficient memory use. To keep this property, they also
forbid functions to return second-class elements, which poses no problem to the expressivity of
the first-class fragment because second-class elements are only introduced by the compilator.
However, even if the calculus is not strictly intuitionistic, the stackability property ensures that
once a continuation has been called, continuations that have been allocated after it won’t be
called, and that when calling a first-class function, all continuations can be deallocated.

I investigated whether this property was interesting from the logical point of view, and found
nothing. However, the distinction between two levels was interesting. Indeed, we can see types
of level 1 as types of level 2 with an additional restriction on their closure, so that they contain
only level 1 variables, and especially, no continuation variables. This leads to the calculus
presented in this document: the □ modality represents the restriction of the closure. In the
following parts of this section, I will briefly present the calculus of [Con+19], and show how
one can see the 𝜆□𝒞-calculus as a refinement of their calculus; indeed, because of section D.4,
we can see that the 𝜆□𝒞-calculus has at least the same expressive power as the 𝜆1/2𝒞-calculus,
and from section D.5 we can see that the CPS translation of the 𝜆□𝒞-calculus is “the same” as
the one of the 𝜆1/2𝒞-calculus; however, the 𝜆□𝒞-calculus is more explicit and its types are nicer
than those of the 𝜆1/2𝒞-calculus and its level system.

D.1. Grammar and type system

The terms and the reductions are the same as in the 𝜆□𝒞-calculus, without the 2 connector.
There are two levels: 1 or 2. They are denoted by 𝑛, 𝑚, 𝑘 or 𝑙.
The types, denoted 𝐴,𝐵, . . . , are 1, 𝐴𝑛 ⊗𝐵𝑚, 𝐴𝑛 ⊕𝐵𝑚, 𝐴𝑛 → 𝐵𝑚 and ¬𝐴𝑛.
The sequent are of the form Γ ⊢ 𝑡 :𝑛 𝐴 or Γ ⊢ 𝑡 : ⊥ with Γ = 𝑥1 :𝑛1 𝐴1, . . . , 𝑥𝑖 :𝑛𝑖 𝐴𝑖.
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𝑛 ≤ 𝑚
𝑥 :𝑛 𝐴 ⊢ 𝑥 :𝑚 𝐴

Γ ⊢ 𝑡 :2 ¬(¬𝐴𝑛)2

Γ ⊢ 𝒞 𝑡 :𝑛 𝐴

Γ ⊢ 𝑡 :𝑛 𝐴 Γ′, 𝑥 :𝑛 𝐴 ⊢ 𝑢 :𝑚 𝐵

Γ,Γ′ ⊢ let 𝑥 = 𝑡 in 𝑢 :𝑚 𝐵

Γ ⊢ 𝑡 :𝑛 𝐴 Γ′, 𝑥 :𝑛 𝐴 ⊢ 𝑢 : ⊥
Γ,Γ′ ⊢ let 𝑥 = 𝑡 in⊥ 𝑢 : ⊥

Γ ⊢ * :𝑛 1
Γ ⊢ 𝑡 :𝑛 1 Γ′, 𝑥 :𝑛 1 ⊢ 𝑢 :𝑚 𝐶

Γ,Γ′ ⊢ let 𝑥 = 𝑡 in 𝑢 :𝑚 𝐶

Γ ⊢ 𝑡 :𝑛 1 Γ′, 𝑥 :𝑛 1 ⊢ 𝑢 : ⊥
Γ,Γ′ ⊢ let 𝑥 = 𝑡 in⊥ 𝑢 : ⊥

Γ≤𝑛, 𝑥 :𝑚 𝐴 ⊢ 𝑡 :𝑘 𝐵
Γ ⊢ 𝜆𝑥.𝑡 :𝑛 𝐴𝑚 → 𝐵𝑘

Γ ⊢ 𝑡 :2 𝐴𝑚 → 𝐵𝑘 Γ′ ⊢ 𝑉 :𝑚 𝐴 𝑘 ≤ 𝑙
Γ,Γ′ ⊢ 𝑡 𝑉 : 𝐵𝑙

Γ≤𝑛, 𝑥 :𝑚 𝐴 ⊢ 𝑡 : ⊥
Γ ⊢ 𝜆⊥𝑥.𝑡 :𝑛 ¬𝐴𝑚

Γ ⊢ 𝑡 :2 ¬𝐴𝑚 Γ′ ⊢ 𝑉 :𝑚 𝐴

Γ,Γ′ ⊢ 𝑡⊥ 𝑉 : ⊥

Γ ⊢ 𝑉 :𝑛 𝐴 Γ′ ⊢𝑊 :𝑚 𝐴 max(𝑛,𝑚) ≤ 𝑘
Γ,Γ′ ⊢ (𝑉,𝑊 ) :𝑘 𝐴𝑛 ⊗𝐵𝑚

Γ ⊢ 𝑉 :𝑛𝑖 𝐴𝑖 max(𝑛1, 𝑛2) ≤ 𝑘
Γ ⊢ 𝜄𝑖 𝑉 :𝑘 𝐴1 ⊕𝐴2

Γ ⊢ 𝑡 :𝑘 𝐴𝑛 ⊗𝐵𝑚 Γ′, 𝑥 :𝑛 𝐴, 𝑦 :𝑚 𝐵 ⊢ 𝑢 :𝑙 𝐶
Γ,Γ′ ⊢ let (𝑥, 𝑦) = 𝑡 in 𝑢 :𝑙 𝐶

Γ ⊢ 𝑡 :𝑘 𝐴𝑛 ⊗𝐵𝑚 Γ′, 𝑥 :𝑛 𝐴, 𝑦 :𝑚 𝐵 ⊢ 𝑢 : ⊥
Γ,Γ′ ⊢ let (𝑥, 𝑦) = 𝑡 in⊥ 𝑢 : ⊥

Γ ⊢ 𝑡 :𝑘 𝐴𝑛 ⊕𝐵𝑚 Γ′, 𝑥 :𝑛 𝐴 ⊢ 𝑢 :𝑙 𝐶 Γ′, 𝑦 :𝑚 𝐵 ⊢ 𝑣 :𝑙 𝐶
Γ,Γ′ ⊢ match 𝑡 with {𝜄1 𝑥.𝑢 | 𝜄2 𝑦.𝑣} :𝑙 𝐶

Γ ⊢ 𝑡 :𝑘 𝐴𝑛 ⊕𝐵𝑚 Γ′, 𝑥 :𝑛 𝐴 ⊢ 𝑢 : ⊥ Γ′, 𝑦 :𝑚 𝐵 ⊢ 𝑣 : ⊥
Γ,Γ′ ⊢ match 𝑡 with⊥ {𝜄1 𝑥.𝑢 | 𝜄2 𝑦.𝑣} : ⊥

𝜃 renaming
Γ ⊢ 𝑡 :𝑛 𝐴

Γ′ ⊢ 𝜃(𝑡) :𝑛 𝐴
Γ ⊢ 𝑡 : ⊥

Γ′ ⊢ 𝜃(𝑡) : ⊥

D.2. Translation to the 𝜆□𝒞-calculus

We define J𝐴K (𝑛), the translation of a type 𝐴 at level 𝑛, as follows.
• J𝐴K (1) = □ J𝐴K (2)
• J1K (2) = 1

• J𝐴𝑛 ⊗𝐵𝑚K (2) = J𝐴K (𝑛)⊗ J𝐵K (𝑚)
• J𝐴𝑛 ⊕𝐵𝑚K (2) = J𝐴K (𝑛)⊕ J𝐵K (𝑚)
• J𝐴𝑛 → 𝐵𝑚K (2) = J𝐴K (𝑛)→ J𝐵K (𝑚)
• J¬𝐴𝑛K (2) = ¬ J𝐴K (𝑛)
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We could devise a more finetuned translation which would, for example, have J1K (𝑛) = 1 andq
𝐴1 ⊗𝐵1y (𝑛) = J𝐴K (1)⊗ J𝐵K (1), but then, given a 1 or a 𝐴⊗𝐵 with 𝐴 and 𝐵 not starting

with □, we would not know if we had to translate it back at level 1 or 2.
JΓK is defined by J𝑥 :𝑛 𝐴K = 𝑥 : J𝐴K (𝑛). If Γ ⊢ 𝑡 :𝑛 𝐴 or Γ ⊢ 𝑡 : ⊥ then JΓK | · ⊢ J𝑡K : J𝐴K (𝑛)

and JΓK ⊢ J𝑡K : ⊥ (the translation of 𝑡 here depends on the sequent, J𝑡K is an abuse of notation).
Let extract(𝑡) = let 2𝑥 = 𝑡 in 𝑥; if 𝑡 : □𝐴 then extract(𝑡) : 𝐴.
We define the following translation on sequents; double bars means that some proof steps

were omitted:

r
𝑥 :𝑛 𝐴 ⊢ 𝑥 :𝑛 𝐴

z
= 𝑥 : J𝐴K (𝑛) | · ⊢ 𝑥 : J𝐴K (𝑛)

r

𝑥 :1 𝐴 ⊢ 𝑥 :2 𝐴
z

= 𝑥 : J𝐴K (1) ⊢ extract(𝑥) : J𝐴K (2)

sΓ ⊢ 𝑉 :𝑛 𝐴 Γ′ ⊢𝑊 :𝑚 𝐵

Γ,Γ′ ⊢ (𝑉,𝑊 ) :2 𝐴𝑛 ⊗𝐵𝑚

{
=

Γ | · ⊢ J𝑉 K : J𝐴K (𝑛) Γ′ | · ⊢ J𝑊 K : J𝐵K (𝑚)

Γ,Γ′ | · ⊢ let 𝑥 = J𝑉 K in let 𝑦 = J𝑊 K in (𝑥, 𝑦) : J𝐴K (𝑛)⊗ J𝐵K (𝑚)

s
Γ ⊢ 𝑉 :1 𝐴 Γ′ ⊢𝑊 :1 𝐵
Γ,Γ′ ⊢ (𝑉,𝑊 ) :2 𝐴1 ⊗𝐵1

{
=

Γ | · ⊢ J𝑉 K : J𝐴K (1) Γ′ | · ⊢ J𝑊 K : J𝐵K (1)

Γ,Γ′ | · ⊢ let 𝑥 = J𝑉 K in let 𝑦 = J𝑊 K in 2(𝑥, 𝑦) : □(J𝐴K (1)⊗ J𝐵K (1))

This is valid because 𝜛(J𝐴K (1)) = 𝜛(J𝐵K (1)) = 2.

t
Γ ⊢ 𝑡 :2 𝐴𝑛 ⊗𝐵𝑚 Γ′, 𝑥 :𝑛, 𝑦 :𝑚⊢ 𝑢 :𝑘 𝐶

Γ,Γ′ ⊢ let (𝑥, 𝑦) = 𝑡 in 𝑢

|

=

JΓK | · ⊢ J𝑡K : J𝐴K (𝑛)⊗ J𝐵K (𝑚) JΓ′K , 𝑥 : J𝐴K (𝑛), 𝑦 : J𝐵K (𝑚) | · ⊢ J𝑢K : J𝐶K (𝑘)
JΓK , JΓ′K | · ⊢ let (𝑥, 𝑦) = 𝑡 in 𝑢 : J𝐶K (𝑘)

t
Γ ⊢ 𝑡 :1 𝐴𝑛 ⊗𝐵𝑚 Γ′, 𝑥 :𝑛, 𝑦 :𝑚⊢ 𝑢 :𝑘 𝐶

Γ,Γ′ ⊢ let (𝑥, 𝑦) = 𝑡 in 𝑢

|

=

JΓK | · ⊢ J𝑡K : □(J𝐴K (𝑛)⊗ J𝐵K (𝑚))

JΓK | · ⊢ extract(J𝑡K) : J𝐴K (𝑛)⊗ J𝐵K (𝑚) JΓ′K , 𝑥 : J𝐴K (𝑛), 𝑦 : J𝐵K (𝑚) | · ⊢ J𝑢K : J𝐶K (𝑘)
JΓK , JΓ′K | · ⊢ let (𝑥, 𝑦) = extract(𝑡) in 𝑢 : J𝐶K (𝑘)
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s
Γ≤1, 𝑥 :𝑛 𝐴 ⊢ 𝑡 :𝑚 𝐵

Γ ⊢ 𝜆𝑥.𝑡 :1 𝐴𝑛 → 𝐵𝑚

{
=

q
Γ≤1, 𝑥 : J𝐴K (𝑛) | · ⊢ J𝑡K : J𝐵K (𝑚)

y

q
Γ≤1y | · ⊢ 𝜆𝑥.𝑡 : J𝐴K (𝑛)→ J𝐵K (𝑚)

q
Γ≤1y | · ⊢ 2𝜆𝑥. J𝑡K : □(J𝐴K (𝑛)→ J𝐵K (𝑚))
JΓK | · ⊢ 2𝜆𝑥. J𝑡K : □(J𝐴K (𝑛)→ J𝐵K (𝑚))

This works because
q
Γ≤1y ⊆ JΓK2.

s
Γ ⊢ 𝑡 :1 𝐴𝑛 → 𝐵1 Γ′ ⊢ 𝑉 :𝑛 𝐴

Γ,Γ′ ⊢ 𝑡 𝑢 : 𝐵2

{
=

JΓK | · ⊢ J𝑡K : □(J𝐴K (𝑛)→ J𝐵K (1))

JΓK | · ⊢ extract(J𝑡K) : J𝐴K (𝑛)→ J𝐵K (1) JΓ′K | · ⊢ J𝑉 K : J𝐴K (𝑛)

JΓK , JΓK | · ⊢ let 𝑓 = extract J𝑡K in let 𝑥 = J𝑉 K in 𝑓 𝑥 : J𝐵K (1)

JΓK , JΓK | · ⊢ extract(let 𝑓 = extract J𝑡K in let 𝑥 = J𝑉 K in 𝑓 𝑥) : J𝐵K (2)
s

Γ ⊢ 𝑡 :2 ¬(¬𝐴𝑛)2

Γ ⊢ 𝒞 𝑡 :𝑛 𝐴

{
=

JΓK | · ⊢ J𝑡K : ¬¬ J𝐴K (𝑛)
JΓK | · ⊢ 𝒞 J𝑡K : J𝐴K (𝑛)

The translation of other cases follow the same idea, adding extract, let and 2 when necessary.
This translation does not preserve values, so it does not preserve substitutions and reductions.

However, it is so only because it add some let here and there, so the translation is still acceptable.

D.3. Translation from the 𝜆□𝒞-calculus

We define 𝑛(𝐴) which represents the level at which the type 𝐴 should be translated as 𝑛(𝐴) = 1
if 𝜛(𝐴) = 2 and 𝑛(𝐴) = 2 else. Essentially, a modal type is translated at level 1 and a
non-modal one at level 2.

and J𝐴K, the translation:
• J1K = 1

• J𝐴⊕𝐵K = J𝐴K𝑛(𝐴) ⊕ J𝐵K𝑛(𝐵)

• J𝐴⊗𝐵K = J𝐴K𝑛(𝐴) ⊗ J𝐵K𝑛(𝐵)

• J𝐴→ 𝐵K = J𝐴K𝑛(𝐴) → J𝐵K𝑛(𝐵)

• J¬𝐴K = ¬ J𝐴K𝑛(𝐴)

• J□𝐴K = J𝐴K

JΓK is defined by J·K = · and JΓ, 𝑥 : 𝐴K = JΓK , 𝑥 :𝑛(𝐴) J𝐴K. JΘK2 is defined by J·K2 = · and
JΘ, 𝑥 : 𝐴K2 = JΘK2 , 𝑥 :1 J𝐴K.

The induction is done solely on the values and terms, not on the derivation:
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• J𝑥K = 𝑥

• J*K = *
• J𝜄𝑖 𝑉 K = 𝜄𝑖 𝑉

• J(𝑉,𝑊 )K = (J𝑉 K , J𝑊 K)
• J2𝑉 K = J𝑉 K

• J𝜆𝑥.𝑡K = 𝜆𝑥. J𝑡K

•
q
𝜆⊥𝑥.𝑡

y
= 𝜆⊥𝑥. J𝑡K

• Jlet 𝑥 = 𝑡 in 𝑢K = let 𝑥 = J𝑡K in J𝑢K

• Jlet 𝑥 = 𝑡 in⊥ 𝑢K = let 𝑥 = J𝑡K in⊥ J𝑢K

• Jlet 2𝑥 = 𝑡 in 𝑢K = let 𝑥 = J𝑡K in J𝑢K

• Jlet 2𝑥 = 𝑡 in⊥ 𝑢K = let 𝑥 = J𝑡K in⊥ J𝑢K

• Jmatch 𝑡 with {𝜄1 𝑥.𝑢 | 𝜄2 𝑦.𝑣}K = match J𝑡K with {𝜄1 𝑥. J𝑢K | 𝜄2 𝑦. J𝑣K}
• Jmatch 𝑡 with⊥ {𝜄1 𝑥.𝑢 | 𝜄2 𝑦.𝑣}K = match J𝑡K with⊥ {𝜄1 𝑥. J𝑢K | 𝜄2 𝑦. J𝑣K}
• Jlet (𝑥, 𝑦) = 𝑡 in 𝑢K = let (𝑥, 𝑦) = J𝑡K in J𝑢K

• Jlet (𝑥, 𝑦) = 𝑡 in⊥ 𝑢K = let (𝑥, 𝑦) = J𝑡K in⊥ J𝑢K

• J𝑡 𝑉 K = J𝑡K J𝑉 K

•
q
𝑡⊥ 𝑉

y
= J𝑡K⊥ J𝑉 K

• J𝒞 𝑡K = 𝒞 J𝑡K

If 𝑡→ 𝑢 then J𝑡K→* J𝑢K.
If Γ | Θ ⊢ 𝑡 : 𝐴 then JΓK , JΘK2 ⊢ J𝑡K :𝑛(𝐴) J𝐴K. If Γ | Θ ⊢ 𝑡 : ⊥ then JΓK , JΘK2 ⊢ J𝑡K : ⊥.

D.4. Factorization

Here, we see that we lack enough 𝜂-rules. However, everything works if we add the rule
let 𝑥 = 𝑡 in 𝑥→𝜂 𝑡 in the 𝜆1/2𝒞-calculus.

For each type 𝐴 in 𝜆1/2𝒞-calculus, we have that 𝑛(J𝐴K (𝑘)) = 𝑘 and JJ𝐴K (𝑘)K = 𝐴. Thus, by
composing the preceding translation, we get that Γ ⊢ 𝑡 :𝑛 𝐴 then JJΓKK ⊢ JJ𝑡KK :𝑛 𝐴. Moreover,
JJ𝑉 KK → 𝑉 for all 𝑉 , and Jextract(𝑡)K = let 𝑦 = 𝑡 in 𝑦 →𝜂 𝑡. The rest follows by induction,
because all the first traduction does is adding some let and some extract on terms that “should”
be values. Thus, the following diagram commutes, up to ∼=:

𝜆1/2𝒞 𝜆□𝒞

𝜆1/2𝒞

J∙K

J∙K
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D.5. CPS factorization

Clearly, the translation on types corresponds. Now, that means that if Γ ⊢ 𝑡 :𝑛 𝐴 then
CPS JΓK , 𝑘 :2 ¬CPS J𝐴K𝑛 ⊢

r
JJ𝑡KK𝜆

t (𝑘)
z

: ⊥ and if Γ ⊢ 𝑡 : ⊥ then CPS JΓK ⊢
r
JJ𝑡KK𝜆

⊥

z
: ⊥.

Additionally, we will prove that we also have that
r
JJ𝑡KK𝜆

t (𝑀)
z
→* CPS J𝑡K (J𝑀K).

First, we have Jextract(𝑡)K𝜆
t (𝑀) = Jlet 𝑦 = 𝑡 in 𝑦K𝜆

t (𝑀) = J𝑡K𝜆
t (𝑀)𝜆⊥𝑦.𝑀⊥ 𝑦 →* J𝑡K𝜆

t (𝑀).
The rest follows easily, for example:
r
JJ𝒞 𝑡KK𝜆

t (𝑀)
z

=
r
J𝒞 J𝑡KK𝜆

t (𝑀)
z

=
r
JJ𝑡KK𝜆

t (𝜆⊥𝑣.𝑣⊥ 𝑀)
z

→* CPS J𝑡K (
r
𝜆⊥𝑣.𝑣⊥ 𝑀

z
)

= CPS J𝑡K (𝜆⊥𝑣.𝑣⊥ J𝑀K)
= CPS J𝒞 𝑡K (J𝑀K)

Or, with 𝑡 :1 (𝐴𝑛 → 𝐵1) and 𝑡 𝑉 :2 𝐵:
r
JJ𝑡 𝑉 KK𝜆

t (𝑀)
z

=
r
Jextract(let 𝑓 = extract J𝑡K in let 𝑥 = J𝑉 K in 𝑓 𝑥)K𝜆

t (𝑀)
z

→*
r
Jlet 𝑓 = extract J𝑡K in let 𝑥 = J𝑉 K in 𝑓 𝑥K𝜆

t (𝑀)
z

→*
r
Jextract J𝑡KK𝜆

t (𝜆⊥𝑓. JJ𝑉 KK𝜆
t (𝜆⊥𝑥.(𝜆⊥𝑘.𝑘⊥ (𝑥, 𝜆⊥𝑦.𝑀⊥ 𝑦))⊥ 𝑓))

z

→*
r
JJ𝑡KK𝜆

t (𝜆⊥𝑓. JJ𝑉 KK𝜆
t (𝜆⊥𝑥.(𝜆⊥𝑘.𝑘⊥ (𝑥, 𝜆⊥𝑦.𝑀⊥ 𝑦))⊥ 𝑓))

z

→* CPS J𝑡K (𝜆⊥𝑓.
r
JJ𝑉 KK𝜆

t (𝜆⊥𝑥.(𝜆⊥𝑘.𝑘⊥ (𝑥, 𝜆⊥𝑦.𝑀⊥ 𝑦))⊥ 𝑓)
z

)

→* CPS J𝑡K (𝜆⊥𝑓.CPS J𝑉 K (𝜆⊥𝑥.(𝜆⊥𝑘.𝑘⊥ (𝑥, 𝜆⊥𝑦.𝑀⊥ 𝑦)⊥ 𝑓)))
→* CPS J𝑡K (𝜆⊥𝑓.CPS J𝑉 K (𝜆⊥𝑥.𝑓⊥ (𝑥, 𝜆⊥𝑦.𝑀⊥ 𝑦)))

= CPS J𝑡K (𝜆⊥𝑓.(𝜆⊥𝑥.𝑓⊥ (𝑥, 𝜆⊥𝑦.𝑀⊥ 𝑦))⊥ CPS J𝑉 K𝑣)
= CPS J𝑡K (𝜆⊥𝑓.𝑓⊥ (CPS J𝑉 K𝑣 , 𝜆

⊥𝑦.𝑀⊥ 𝑦))
= CPS J𝑡 𝑉 K (𝑀)
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Thus again, up to ∼=, the following diagram commutes:

𝜆1/2𝒞 𝜆□𝒞

𝜆□𝒞

𝜆1/2𝒞

J∙K

CPSJ∙K

J∙K𝜆

J∙K
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